
log_calls Documentation
Release 0.3.2

Brian O’Neill

Dec 26, 2020

CONTENTS

1 Table of Contents 1

Index 87

i

ii

CHAPTER

ONE

TABLE OF CONTENTS

1.1 log_calls — A Decorator for Debugging and Profiling

log_calls is a Python 3.3+ decorator that can print a lot of useful information about calls to decorated functions,
methods and properties. The decorator can write to stdout, to another stream or file, or to a logger. log_calls
provides methods for printing your own debug messages to its output stream, and for easily “dumping” variables and
expressions paired with their values. It can decorate individual functions, methods and properties; but it can also
programmatically decorate callable members of entire classes and class hierarchies, even of entire modules, with just
a single line — which can greatly expedite learning a new codebase.

In short, log_calls can save you from writing, rewriting, copying, pasting and tweaking a lot of ad hoc, debug-only,
boilerplate code — and it can keep your codebase free of that clutter.

For each call to a decorated function or method, log_calls can show you:

• the caller (in fact, the complete call chain back to another log_calls-decorated caller, so there are no gaps in
chains displayed)

• the arguments passed to the function or method, and any default values used

• nesting of calls, using indentation

• the number of the call (whether it’s the 1st call, the 2nd, the 103rd, . . .)

• the return value

• the time it took to execute

• and more!

These and other features are optional and configurable settings, which can be specified for each decorated callable via
keyword parameters, as well as en masse for a group of callables all sharing the same settings. You can examine and
change these settings on the fly using attributes with the same names as the keywords, or using a dict-like interface
whose keys are the keywords.

log_calls can also collect profiling data and statistics, accessible at runtime, such as:

• the number of calls to a function

• total time taken by the function

• the function’s entire call history (arguments, time elapsed, return values, callers, and more), available as text in
CSV format and, if Pandas is installed, as a DataFrame.

The package contains two other decorators:

• record_history, a stripped-down version of log_calls, only collects call history and statistics, and outputs no
messages;

1

http://pandas.pydata.org
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe

log_calls Documentation, Release 0.3.2

• used_unused_keywords lets a function or method easily determine, per-call, which of its keyword parameters
were actually supplied by the caller, and which received their default values.

This document describes the decorators’ features and their use. Th e``tests/`` subdirectory of the distribution archive
contains many test suites. These contain many additional examples, with commentary. As tests, they provide 96+%
coverage.

1.2 What’s New (releases 0.3.2, 0.3.1 and 0.3.0)

This release, 0.3.2, updates log_calls for Python 3.6. There are no changes to package code, only minor changes to
documentation and to a single test. However, the package itself is reorganized: the docs/ and tests/ subdirectories
have been moved to the top level of the distribution archive, at the same level as log_calls/ rather than within the
package. They are no longer installed by setup.py or pip, so you’ll need the distribution to access their files.

This chapter catalogs additions and changes in the current release and its predecessor. Those in 0.3.2/0.3.1 are few;
those in 0.3.0, several. Appendix II contains the complete list of what has been new in earlier versions.

1.2.1 Version 0.3.2 / 0.3.1

What’s New

• This version simplifies writing debugging messages and dumping expressions to the log_calls output stream in
a log_calls-aware way. There are now two methods for these purposes:

– log_calls.print()

– log_calls.print_exprs()

which can be called from within any decorated callable. These supercede the now deprecated log_message
and log_exprs attributes on each decorated callable. The new methods are notably easier to use from within
classes.

Like their predecessors, these methods are indent-aware, and, unlike the global print function, they produce
no output unless called from within an enabled decorated function.

You can now simply call log_calls.print('Starting timer.') or log_calls.
print_exprs('x', 'y', '(x+y)/2', without having to first obtain a reference to a “wrapper”
and then calling the log_* methods on that.

Version 0.3.0 provided one-stop shopping for obtaining wrappers; in earlier versions of log_calls you had to
navigate to it yourself, with different expressions for instance methods, classmethods, staticmethods and prop-
erties.

By default, if you call log_calls.print* from within a method or function that isn’t decorated, it does
nothing. You can comment out the @log_calls decorator, or use the NO_DECO parameter to achieve the
same end, and the .print* method calls will play nicely: they won’t output anything, and the calls won’t
raise AttributeError as they would formerly when calling the methods on a wrapper that is None. In
short, leaving the log_calls.print* lines uncommented is as benign as it can be.

But probably at some point you do want to know when you have lingering code that’s supposedly development-
only. log_calls will inform you of that if you set the following new global flag to True (or to something truthy):

• log_calls.print_methods_raise_if_no_deco (bool; default: False)

2 Chapter 1. Table of Contents

log_calls Documentation, Release 0.3.2

When this flag is true, calls to log_calls.print and log_calls.print_exprs from within an un-
decorated function or method will raise an appropriate exception. This compels you to comment out or delete
any calls to log_calls.print* from within undecorated functions or methods.

The chapter Writing log_calls-Aware Debug Messages documents the new methods and global flag.

• The new methods and global exist on record_history too:

– record_history.print()

– record_history.print_exprs()

– record_history.print_methods_raise_if_no_deco

all exist and behave analogously to the log_calls attributes.

What’s Changed

• A callable’s display name now has its __name__ in parentheses following its __qualname__ if (and only
if)

– the name parameter was not provided to log_calls for the callable, and

– the callable’s __name__ is not a substring of its __qualname__.

See the section section Decorating “external” code in the Quick Start chapter for a motivating example.

• log_exprs now a suffix keyword parameter (as does log_calls.print_exprs()).

• Fixed: log_calls.decorate_module() wouldn’t decorate only classes, or only functions; it would dec-
orate nothing instead.

Deprecations

• wrapper.log_message() and wrapper.log_exprs().

Use log_calls.print() and log_calls.print_exprs() instead.

1.2.2 Version 0.3.0

What Was New in 0.3.0

• log_calls and record_history can decorate classes – all, or some, of the methods and properties within a class –
and their inner classes.

– The decorators properly decorate instance methods, classmethods, staticmethods and properties (whether
defined with the @property decorator or the property function).

– Settings provided in the class-level decorator apply to all decorated members and inner classes. Mem-
bers and inner classes can also be individually decorated, and (by default) their explicitly given settings
supplement and override those given at outer levels.

– omit and only keyword parameters to a class decorator let you concisely specify which callables to
decorate. Each is a sequence of strings specifying methods and/or properties — by name, with optional
class prefixes, with optional suffixes for selecting specific property methods, as well as with wildcards and
character-range inclusion and exclusion using “glob” syntax.

1.2. What’s New (releases 0.3.2, 0.3.1 and 0.3.0) 3

log_calls Documentation, Release 0.3.2

– A decorated class has methods get_log_calls_wrapper(methodname) and
get_own_log_calls_wrapper(), the latter for use by methods and properties of the deco-
rated class. These provide easy and uniform ways to obtain the wrapper of a decorated method, without
the special-case handling otherwise (and formerly) required for classmethods and properties.

record_history provides the analogous methods get_record_history_wrapper(methodname)
and get_own_record_history_wrapper().

These capabilities are documented in Decorating Classes.

• log_calls and record_history have classmethods to programmatically decorate functions, classes and class hier-
archies, even modules, for situations where altering source code is impractical (too many things to decorate) or
inadvisable (third-party packages and modules). These methods can expedite learning a new codebase:

– decorate_class(baseclass, decorate_subclasses=False, **setting_kwds)
decorates a class and optionally all of its subclasses

– decorate_hierarchy(baseclass, **setting_kwds) decorates a class and all of its sub-
classes

– decorate_function(f, **setting_kwds) decorates a function defined in or imported into the
module from which you call this method

– decorate_package_function(f, **setting_kwds) decorates a function in an imported
package

– decorate_module_function(f, **setting_kwds) decorates a function in an imported pack-
age or module

– decorate_module(mod: 'module', functions=True, classes=True,

**setting_kwds) decorates all functions and classes in a module.

These are documented in Bulk (Re)Decoration, (Re)Decorating Imports.

• log_calls has classmethods to globally set and reset default values for settings, program-wide:

– set_defaults(new_default_settings=None, **more_defaults)

– reset_defaults()

as well as classmethods to retrieve the current defaults and the “factory defaults”, each as an OrderedDict:

– get_defaults_OD()

– get_factory_defaults_OD()

These are documented in Retrieving and Changing the Defaults.

• The log_exprs() method, added as an attribute to decorated callables, allows a wrapped callable to eas-
ily “dump” values of variables and expressions. Simply pass it one or more expressions, as strings; it
prints the expressions together with their current values. See Writing expressions and their values with
log_calls.print_exprs().

4 Chapter 1. Table of Contents

log_calls Documentation, Release 0.3.2

• New keyword parameters:

– NO_DECO, a “kill switch”. When true, the decorator does nothing, returning the decorated callable or class
itself, unwrapped and unaltered. Using this parameter in a settings file or dictionary lets you toggle “true
bypass” with a single switch, e.g. for production, without having to comment out every decoration.

– name, a literal string or a format string, lets you specify a custom name for a decorated callable.

– override, a boolean, intended mainly for use with log_calls as a functional and with the decorate_*
methods, allows updating the explicit settings of already decorated classes and callables.

– mute, a three-valued setting:

* mute nothing (default)

* mute output about calls but allow log_message() and log_exprs() output

* mute everything.

• Global mute, log_calls.mute, which can assume the same values as the new mute setting.

• Classmethods log_calls.version() and record_history.version() return the version string.

What Changed in 0.3.0

• The indent setting is now by default True.

• By default, the display name for a function or method is now its __qualname__, which in the case of methods
includes class name. This makes unnecessary what was probably the main use case of prefix.

• record_history can now use log_message() and log_exprs(). Output is always via print.

• Fixed: log_message() formerly would blow up if called on a function or method for which logging was
disabled. It now produces no output in that situation.

• prefix is mutable in log_calls and record_history.

• Fixed, addressed: double-decoration no longer raises an exception. Doing so doesn’t wrap another decorator
around an already wrapped function or method, but merely adjusts the settings of the decorated callable.

• Change to __repr__ handling in the arguments section of output: use object.__repr__ for objects
still in construction (i.e. whose __init__ methods are still active), otherwise use repr.

• log_calls won’t itself decorate __repr__ methods (it will decorate them instead with reprlib.
recursive_repr()); record_history can decorate __repr__.

• Removed the deprecated settings_path keyword parameter.

• Officially, explicitly requires Python 3.3+. The package won’t install on earlier versions.

• For consistency with the get*_defaults_OD() methods, the as_OrderedDict() method of the “set-
tings” objects (e.g. log_calls_settings) has been renamed as_OD(). Note, as_OrderedDict()
is still supported but is now deprecated. You’ll have to run the Python interpreter with the -Wd flag to see the
deprecation warning(s), which include the file names and line numbers where as_OrderedDict() occurs.
(Since Python 3.2, DeprecationWarnings are by default not displayed.)

1.2. What’s New (releases 0.3.2, 0.3.1 and 0.3.0) 5

log_calls Documentation, Release 0.3.2

1.3 Installation

1.3.1 Dependencies and requirements

The log_calls package has no dependencies — it requires no other packages. All it requires is a standard distribution
of Python 3.3 or higher (Python 3.4+ recommended).

1.3.2 Installing log_calls

You have two simple options:

1. Run:

$ pip install log_calls

to install log_calls from PyPI (the Python Package Index), or

Here and elsewhere, $ at the beginning of a line indicates your command prompt, whatever it may
be.

2. download the compressed distribution file (a .tar.gz or a .zip), uncompress it into a directory, and run:

$ python setup.py install

in that directory.

The complete distribution of log_calls (available as a tar.gz or a zip from PyPI or github) contains three subdi-
rectories: log_calls, the package proper; docs, the documentation source files; and tests, mentioned above.
These last two subdirectories are not installed by pip, so to obtain those files you’ll have to download an archive, and
then, you may as well install log_calls using method 2.

Whichever you choose, ideally you’ll do it in a virtual environment (a virtualenv). In Python 3.3+, it’s easy to set up a
virtual environment using the pyvenv tool included in the standard distribution.

1.3.3 Running the tests

Each *.py file in the log_calls/ directory has at least one corresponding test file test_*.py in the
log_calls/tests/ directory. The tests provide 96+% coverage. All tests have passed on every tested plat-
form + Python version (3.3.x through 3.6.0); however, that’s a sparse matrix :) If you encounter any turbulence, do let
us know.

You can run the tests for log_calls after downloading it but before installing it, by running the following command in
the directory into which you uncompressed the download:

$./run_tests.py [-q | -v | -h]

which takes switches -q for “quiet” (the default), -v for “verbose”, and -h for “help”.

6 Chapter 1. Table of Contents

https://docs.python.org/3/using/scripts.html?highlight=pyvenv#pyvenv-creating-virtual-environments

log_calls Documentation, Release 0.3.2

What to expect

Both of the above commands run all tests in the tests/ subdirectory. If you run either of them, the output you see
should end like so:

Ran 112 tests in 2.235s
OK

indicating that all went well. (Depending upon which Python version you’re using and on what packages you
have installed, you may see fewer tests reported.) If any test fails, it will tell you.

Note: This package probably requires the CPython implementation, as it uses internals of stack frames which may
well differ in other interpreters. It’s not guaranteed to fail without CPython, it’s just untested. (If you’re able and
willing to run the tests under another interpreter or compiler, please tell us what you find.)

PyPy is not (yet?) compatible with `log_calls`. Finally PyPy3 supports Python 3.3: as of Winter 2017, the PyPy3
project has reached Python 3.3.5 with their version PyPy3.3, with 3.5 support in development (PyPy3.5, by name).
So finally we can test its compatibility with log_calls: 8 of 110 tests fail. Some of the failures appear to be because
PyPy3.3 has incorrect values for ``__qualname__``s of inner classes, and we’d expect these tests to pass in PyPy3.5.
Others may be more fundamental — watch this space for at least a fuller assessment, if not a change in compatibility
status.

1.4 Quick Start

1.4.1 Basic usage

First, let’s import the log_calls decorator from the package of the same name:

>>> from log_calls import log_calls

In code, log_calls now refers to the decorator, a class (an object of type type), and not to the module:

>>> type(log_calls)
type

The decorator has many options, and thus can take many parameters, but let’s first see the simplest examples possible,
using no parameters at all.

Decorating functions

If you decorate a function with log_calls, each call to the function is generally preceded and followed by some re-
portage. The decorator first writes messages announcing entry to the function and what arguments it has received; the
decorator calls the function with those arguments, and the function executes; upon its return, the decorator finishes up
and announces the return of the function:

>>> @log_calls()
... def f(a, b, c):
... print("--- Hi from f")
>>> f(1, 2, 3)
f <== called by <module>

arguments: a=1, b=2, c=3

(continues on next page)

1.4. Quick Start 7

log_calls Documentation, Release 0.3.2

(continued from previous page)

--- Hi from f
f ==> returning to <module>

Adding another decorated function to the call chain presents useful information too. Here, g calls the decorated f
above. Observe that (by default) the log_calls output for the nested call to f is indented to align with the inner lines of
the log_calls output for g:

>>> @log_calls()
... def g(n):
... print("*** Hi from g")
... f(n, 2*n, 3*n)
... print("*** Bye from g")
>>> g(3)
g <== called by <module>

arguments: n=3

*** Hi from g
f <== called by g

arguments: a=3, b=6, c=9
--- Hi from f

f ==> returning to g

*** Bye from g
g ==> returning to <module>

log_calls gives informative output even when call chains include undecorated functions. In the next example, a deco-
rated function h calls an undecorated g2, which calls an undecorated g1, which, finally, calls our original decorated
f:

>>> def g1(n): f(n, 2*n, 3*n)
>>> def g2(n): g1(n)
>>> @log_calls()
... def h(x, y): g2(x+y)

Now let’s call h:

>>> h(2, 3)
h <== called by <module>

arguments: x=2, y=3
f <== called by g1 <== g2 <== h

arguments: a=5, b=10, c=15
--- Hi from f

f ==> returning to g1 ==> g2 ==> h
h ==> returning to <module>

Notice that when writing entry and exit messages for f, log_calls displays the entire active call chain back to the
nearest decorated function, so that there aren’t “gaps” in the chain of functions it reports on. If it didn’t do this, we’d
see only f <== called by g1, and then f ==> returning to g1 followed by h ==> returning to
<module>, which wouldn’t tell us the whole story about how control reached g1 from h.

See the Call Chains chapter for more examples and finer points.

8 Chapter 1. Table of Contents

log_calls Documentation, Release 0.3.2

Decorating methods

Similarly, you can decorate methods (and properties) within a class:

>>> class A():
... def __init__(self, n):
... self.n = n
...
... @log_calls()
... def ntimes(self, m):
... return self.n * m

Only the ntimes method is decorated:

>>> a = A(3) # __init__ called
>>> a.ntimes(4)
A.ntimes <== called by <module>

arguments: self=<__main__.A object at 0x...>, m=4
A.ntimes ==> returning to <module>
12

1.4.2 Decorating classes

To decorate all methods of a class, simply decorate the class itself:

>>> @log_calls()
... class C():
... def __init__(self, n):
... self.n = n if n >= 0 else -n
...
... @staticmethod
... def revint(x): return int(str(x)[::-1])
...
... @property
... def revn(self): return self.revint(self.n)

All methods of C are now decorated. Creating an instance logs the call to __init__:

>>> c = C(123)
C.__init__ <== called by <module>

arguments: self=<__main__.C object at 0x...>, n=123
C.__init__ ==> returning to <module>

Accessing its revn property calls the staticmethod revint, and both calls are logged:

>>> c.revn
C.revn <== called by <module>

arguments: self=<__main__.C object at 0x...>
C.revint <== called by C.revn

arguments: x=123
C.revint ==> returning to C.revn

C.revn ==> returning to <module>
321

1.4. Quick Start 9

log_calls Documentation, Release 0.3.2

If you want to decorate only some of the methods of a class, you don’t have to individually decorate all and only all
the ones you want: the only and omit keyword parameters to the class decorator let you concisely specify which
methods will and won’t be decorated. The section on the omit and only keyword parameters contains the details.

Decorating most methods, overriding the settings of one method

Suppose you have a class D that’s just like C above, but adds a double() method. (For the sake of example, never
mind that in practice you might subclass C.) Suppose you want to decorate all callables in D except revint, and
furthermore, you want log_calls to report values returned by the property getter revn. Here’s how to do it:

>>> @log_calls(omit='revint')
... class D():
... def __init__(self, n):
... self.n = n if n >= 0 else -n
...
... @staticmethod
... def revint(x): return int(str(x)[::-1])
...
... def double(self): return self.n + self.n
...
... @property
>>> @log_calls(log_retval=True)
... def revn(self): return self.revint(self.n)

By default, log_calls does not display return values, and the outer, class-level decorator uses that default. The explicit
decorator of revn overrides that, specifying the desired setting. Note that @log_calls follows @property: in
general, when decorating a callable in a class, @log_calls should come after any @property, @classmethod
or @staticmethod decorator.

Let’s see this class in action:

>>> d = D(71)
D.__init__ <== called by <module>

arguments: self=<__main__.D object at 0x...>, n=71
D.__init__ ==> returning to <module>

The return value of d.double() is not logged:

>>> d.double()
D.double <== called by <module>

arguments: self=<__main__.D object at 0x...>
D.double ==> returning to <module>

However, the return value of revn is logged, and revint has not been decorated:

>>> print('~~~\\nMy favorite number plus 3 is', d.revn + 3)
D.revn <== called by <module>

arguments: self=<__main__.D object at 0x...>
D.revn return value: 17

D.revn ==> returning to <module>
~~~
My favorite number plus 3 is 20

A doctest quirk

10 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

The doctest examples in this document use \\n and \\t where in actual code you’d write \n and \t respectively.
All the examples herein work (as tests, they pass), but they would fail if \n were used. It would also be possible to
use “raw” strings and single escapes, as in r'Nobody ever expects\nThe Spanish Inquisition!'.

For more information

The Decorating Classes chapter covers that subject thoroughly — basics, details, subtleties and techniques. In partic-
ular, the parameters only and omit are documented there, in the section the omit and only keyword parameters.

1.4.3 Writing log_calls-aware debugging messages

Printing statements to an output device or file is one of the oldest forms of debugging. These statements track a
program’s progress, display the values of variables, announce milestones, report on the consistency of internal state,
and so on. Let’s call such statements debugging messages.

The @log_calls decorator automates the boilerplate aspects of this reportage: who calls whom, when, how, and
with what result. log_calls also provides the methods

• log_calls.print() and

• log_calls.print_exprs()

as attractive alternatives to the print function for writing other debugging messages.

One common kind of debugging message reports the values of variables as a program runs, taking snapshots at strategic
places at the top level of the code, or within a loop as an algorithm executes. Writing such statements becomes tedious
quickly — they’re all alike though in details all different too. The log_calls.print_exprs method lets you
easily display the values of variables and expressions within a decorated function.

All other debugging messages require a method as general as print: the log_calls.print method is that
counterpart.

Both methods write to the same output destination as the decorator, whether that’s the console, a file or a logger, and
their output is properly synced and aligned with the decorator’s output:

>>> @log_calls()
... def gcd(a, b):
... log_calls.print("At bottom of loop:")
... while b:
... a, b = b, (a % b)
... log_calls.print_exprs('a', 'b', prefix="\\t", suffix= '\\t<--')
... return a
>>> gcd(48, 246)
gcd <== called by <module>

arguments: a=48, b=246
At bottom of loop:

a = 246, b = 48 <--
a = 48, b = 6 <--
a = 6, b = 0 <--

gcd ==> returning to <module>
6

If you delete, comment out or otherwise disable the decorator, the print* methods will do nothing (except waste a
little time). To illustrate this, we could just repeat the above function with the decorator omitted or commented out;
but we can also disable the decorator dynamically, and the print* methods will be silent too:

1.4. Quick Start 11

http://www.pythonhosted.org/log_calls/decorating_classes.html#the-omit-and-only-keyword-parameters-default-tuple


log_calls Documentation, Release 0.3.2

>>> gcd.log_calls_settings.enabled = False
>>> gcd(48, 246)
6

You can pass expressions to print_exprs:

>>> @log_calls()
... def f():
... x = 42
... log_calls.print_exprs('x', 'x//6', 'x/6')
>>> f()
f <== called by <module>

x = 42, x//6 = 7, x/6 = 7.0
f ==> returning to <module>

print and print_exprs properly indent even multiline messages:

>>> @log_calls()
... def f(a):
... log_calls.print("Even multiline messages\\n"
... "are properly indented.")
... return g(a, 2*a)
>>> @log_calls()
... def g(x, y):
... retval = x + y + 1
... log_calls.print_exprs('retval',
... prefix="So are multiline\\n"
... "prefixes --\\n",
... suffix="\\n-- and suffixes.")
... return retval
>>> f(2)
f <== called by <module>

arguments: a=2
Even multiline messages
are properly indented.
g <== called by f

arguments: x=2, y=4
So are multiline
prefixes --
retval = 7
-- and suffixes.

g ==> returning to f
f ==> returning to <module>
7

You can specify multiple lines for print either with one string that has explicit newlines, as above, or by using the
sep keyword parameter together with multiple positional string arguments:

>>> @log_calls()
... def h():
... log_calls.print("Line 1 of 3", "line 2 of 3", "line 3 of 3",
... sep='\\n')
>>> h()
h <== called by <module>

Line 1 of 3
line 2 of 3
line 3 of 3

h ==> returning to <module>

12 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

The behavior of the print* methods is configurable in a few ways:

• their output can be “allowed through” while muting the output of the decorators;

• their output doesn’t have to be indented, it can be flush left (extra_indent_level=-1000);

• optionally the methods can raise an exception if called from within a function or method that isn’t decorated, so
that development-only code doesn’t sneak into production.

See the chapter Writing log_calls-Aware Debugging Messages for details about the print() and print_exprs()
methods. The chapter Dynamic Control of Settings documents the log_calls_settings attribute of a decorated
callable.

1.4.4 Decorating “external” code

Sometimes it’s enlightening and instructive to decorate objects in a package or module that you import. It might be
in a new codebase you’re getting to know, your own nontrivial code from a while ago which you now wish you had
documented more, or even a function, class or module in Python’s standard library.

We’ll illustrate techniques with a simple example: decorating the fractions class fractions.Fraction in the
standard library, to examine how it works. Along the way we’ll illustrate using log_calls settings to filter the output,
forming hunches about how Fraction works based on the information the decorator presents, and consulting the
source code to confirm or refute those hunches.

First, let’s import the class, decorate it and create an instance:

>>> from fractions import Fraction as Frac
>>> log_calls.decorate_class(Frac)
>>> print(Frac(3,4))
Fraction.__new__ <== called by <module>

arguments: cls=<class 'fractions.Fraction'>, numerator=3, denominator=4
defaults: _normalize=True

Fraction.__new__ ==> returning to <module>
Fraction.__str__ <== called by <module>

arguments: self=Fraction(3, 4)
Fraction.__str__ ==> returning to <module>
3/4

(Note: In this section, the expected output shown is from Python 3.6 and 3.5. The output of Python 3.4 differs slightly:
in places it’s less efficient, and __new__, indirectly called below, had no _normalize parameter.)

Now create a couple of fractions, using the log_calls global mute to do it in silence:

>>> log_calls.mute = True
>>> fr56 = Frac(5,6)
>>> fr78 = Frac(7,8)
>>> log_calls.mute = False

Before using these, let’s redecorate to improve log_calls output. After trying other examples at the command line it
becomes apparent that __str__ gets called a lot, and the calls become just noise, so let’s omit that. To eliminate
more clutter, let’s suppress the exit lines (“. . . returning to. . . ”). We’ll also display return values. Here’s how to
accomplish all of that, with another call to decorate_class, which won’t wrap the log_calls wrappers already
created but will instead just update their settings:

>>> log_calls.decorate_class(Frac,
... omit='__str__', log_exit=False, log_retval=True)

1.4. Quick Start 13



log_calls Documentation, Release 0.3.2

Finally, let’s do some arithmetic on fractions:

>>> print(fr78 - fr56)
Fraction._operator_fallbacks.<locals>.forward (__sub__) <== called by <module>

arguments: a=Fraction(7, 8), b=Fraction(5, 6)
Fraction.denominator <== called by _sub <== Fraction._operator_fallbacks.<locals>.

→˓forward (__sub__)
arguments: a=Fraction(7, 8)
Fraction.denominator return value: 8

Fraction.denominator <== called by _sub <== Fraction._operator_fallbacks.<locals>.
→˓forward (__sub__)

arguments: a=Fraction(5, 6)
Fraction.denominator return value: 6

Fraction.numerator <== called by _sub <== Fraction._operator_fallbacks.<locals>.
→˓forward (__sub__)

arguments: a=Fraction(7, 8)
Fraction.numerator return value: 7

Fraction.numerator <== called by _sub <== Fraction._operator_fallbacks.<locals>.
→˓forward (__sub__)

arguments: a=Fraction(5, 6)
Fraction.numerator return value: 5

Fraction.__new__ <== called by _sub <== Fraction._operator_fallbacks.<locals>.
→˓forward (__sub__)

arguments: cls=<class 'fractions.Fraction'>, numerator=2, denominator=48
defaults: _normalize=True
Fraction.__new__ return value: 1/24

Fraction._operator_fallbacks.<locals>.forward (__sub__) return value: 1/24
1/24

The topmost call is to an inner function forward of the method Fraction._operator_fallbacks, pre-
sumably a closure. The __name__ of the callable is actually __sub__ (its __qualname__ is Fraction.
_operator_fallbacks.<locals>.forward). We know that classes implement the infix subtraction opera-
tor - with “dunder” methods __sub__ and __rsub__, so it appears that in Fraction, the closure is the value of
the attribute __sub__:

>>> Frac.__sub__
<function Fraction._operator_fallbacks.<locals>.forward...>
>>> Frac.__sub__.__qualname__
'Fraction._operator_fallbacks.<locals>.forward'
>>> Frac.__sub__.__name__
'__sub__'

The closure calls an undecorated function or method _sub. Because _sub isn’t decorated we don’t know what its
arguments are, and the call chains for the decorated numerator, denominator and __new__ chase back to
__sub__. It appears to know about both operands, so we might guess that it takes two arguments. A look at the
source code for fractions, fractions.py confirms that guess (_sub is on line 433).

14 Chapter 1. Table of Contents

https://hg.python.org/cpython/file/3.6/Lib/fractions.py


log_calls Documentation, Release 0.3.2

Why isn’t _sub decorated?

Let’s check that:

>>> print(Frac._sub(fr78, fr56))
Fraction._sub <== called by <module>

arguments: a=Fraction(7, 8), b=Fraction(5, 6)
Fraction.denominator <== called by Fraction._sub

arguments: a=Fraction(7, 8)
Fraction.denominator return value: 8

Fraction.denominator <== called by Fraction._sub
arguments: a=Fraction(5, 6)
Fraction.denominator return value: 6

Fraction.numerator <== called by Fraction._sub
arguments: a=Fraction(7, 8)
Fraction.numerator return value: 7

Fraction.numerator <== called by Fraction._sub
arguments: a=Fraction(5, 6)
Fraction.numerator return value: 5

Fraction.__new__ <== called by Fraction._sub
arguments: cls=<class 'fractions.Fraction'>, numerator=2, denominator=48
defaults: _normalize=True
Fraction.__new__ return value: 1/24

Fraction._sub return value: 1/24
1/24

Aha: it is decorated after all, and the log_calls output certainly looks familiar.

Consulting the source code makes clear what’s going on. When Fraction is created, on line 439 __sub__ is
set equal to a closure returned by _operator_fallbacks(_sub, operator.sub), defined on line 318.
The closure is an instance of its inner function forward on line 398, which implements generic dispatch based on
argument types to one of the two functions passed to _operator_fallbacks. When called with two Fractions,
__sub__ calls _sub and not operator.sub. On line 407, _operator_fallbacks sets the name of the
closure to __sub__.

So, the closure forward that implements __sub__ has a nonlocal variable bound to the real _sub at class initial-
ization, before the methods of the class were decorated. The closure calls the inner, decorated _sub, not the log_calls
wrapper around it.

How the code works

Ultimately, then, subtraction of fractions is performed by a function _sub, to which __sub__ i.e. Fraction.
_operator_fallbacks.<locals>.forward dispatches. _sub uses the public properties denominator
and numerator to retrieve the fields of the Fractions, and returns a new Fraction, with a numerator of 2 (= 7
* 6 - 8 * 5) and denominator of 48 (= 6 * 8). __new__ (line 124 of the source code) reduces the returned Fraction
to lowest terms just before returning it (because its parameter _normalize is true, its default value, which gives
Python 3.4 behavior).

Scrolling through fractions.py reveals that other operators are implemented in exactly the same way.

1.4. Quick Start 15



log_calls Documentation, Release 0.3.2

For more information

The decorate_* methods are presented in the chapter Bulk (Re)Decoration, (Re)Decorating Imports.

1.4.5 Where to go from here

These examples have shown just a few of the features that make log_calls powerful, versatile, yet easy to use. They
introduced a few of log_calls’s keyword parameters, the source of much of its versatility, as well as one of the
decorate_* methods.

The next chapter, What log_calls Can Decorate, gives general culture but also introduces terminology and concepts
subsequently used throughout. An essential chapter follows: Keyword Parameters documents the parameters in detail.
That chapter is a reference; it’s not necessary to assimilate its details before proceeding on to further topics. For an
even more concise reference, in cheatsheet format, see Appendix I: Keyword Parameters Reference.

log_calls provides a lot of functionality, which these examples have only introduced. The remaining chapters docu-
ment all of it.

1.5 What log_calls Can Decorate

In this document, the phrase “decorated callable” appears frequently. Generally we use callable as a generic term that
includes global functions as well as methods and properties of classes. We use it to emphasize that what is said applies
equally to global functions, methods and properties, and indeed to anything that log_calls can decorate.

We use more the specific terms decorated function, decorated method, and so on, as appropriate for examples, and
when what is said applies to the narrower class of callables named but perhaps not to all callables.

“functional”

A functional is a higher-order function, a function of functions.

• When passed a function fn, log_calls(**kwds)(fn) returns a function;

• when passed a class klass, log_calls(**kwds)(klass) returns the class klass.

Functions defined with def, methods and properties don’t exhaust the callables that log_calls can decorate. Lambda
expressions are functions, and can be decorated by using log_calls() as a functional, without the @ syntactic
sugar:

>>> f = log_calls()(lambda x: 2 * x)
>>> f(3)
<lambda> <== called by <module>

arguments: x=3
<lambda> ==> returning to <module>
6

The question arises: what, exactly, can log_calls decorate? (and thus, what can’t it decorate?) We won’t attempt to
give necessary and sufficient conditions for that set of callables. But the following is true:

Anything that log_calls can decorate is a callable,
but not every callable can be decorated by log_calls.

16 Chapter 1. Table of Contents

http://www.pythonhosted.org/log_calls/decorating_functions_class_hierarchies.html
http://www.pythonhosted.org/log_calls/appendix_I_parameters_table.html


log_calls Documentation, Release 0.3.2

Whatever log_calls cannot decorate, it simply returns unchanged.

1.5.1 What is a “callable”?

Loosely, a “callable” is anything that can be called. In Python, the term has a precise meaning, encompassing not only
functions and methods but also classes, as well as instances of classes that implement a __call__ method. A correct
though unsatisfying definition is: an object is callable iff the builtin callable function returns True on that object.
The Python documentation for callable is good as far as it goes, but a bit breezy; greater detail can be found in the
stackoverflow Q&A What is a “callable” in Python? and in the articles cited there.

1.5.2 A few negative examples

log_calls can’t decorate callable builtins, such as len — it just returns the builtin unchanged:

>>> len is log_calls()(len) # No "wrapper" around len -- not deco'd
True
>>> dict.update is log_calls()(dict.update)
True

Similarly, log_calls doesn’t decorate builtin or extension type classes, returning the class unchanged:

>>> _ = log_calls()(dict)
>>> dict(x=1) # dict.__init__ not decorated, no output

It also doesn’t decorate various objects which are callables by virtue of having a __call__ method, such as
functools.partial objects:

>>> from functools import partial
>>> def h(x, y): return x + y
>>> h2 = partial(h, 2) # so h2(3) == 5
>>> h2lc = log_calls()(h2)
>>> h2lc is h2 # not deco'd
True

However, log_calls can decorate classes whose instances are callables by virtue of implementing a __call__
method:

>>> @log_calls()
... class Rev():
... def __call__(self, s): return s[::-1]
>>> rev = Rev()
>>> callable(rev)
True
>>> rev('ABC')
Rev.__call__ <== called by <module>

arguments: self=<Rev object at 0x...>, s='ABC'
Rev.__call__ ==> returning to <module>
'CBA'

1.5. What log_calls Can Decorate 17

https://docs.python.org/3/library/functions.html?highlight=callable#callable
http://stackoverflow.com/questions/111234/what-is-a-callable-in-python


log_calls Documentation, Release 0.3.2

1.6 Keyword Parameters

log_calls has many features, and thus many, mostly independent, keyword parameters (21 in release 0.3.2). This
section covers most of them thoroughly, one at a time (though of course you can use multiple parameters in any call
to the decorator):

• enabled

• args_sep

• log_args

• log_retval

• log_exit

• log_call_numbers

• log_elapsed

• indent

• name

• prefix

• file

• mute (also discusses the global mute switch log_calls.mute)

• settings

• NO_DECO

• override

The remaining parameters are fully documented in later chapters, For completeness, they’re briefly introduced at the
end of this chapter, together with links to their actual documentation.

• omit, only

• logger, loglevel

• record_history, max_history

1.6.1 What is a setting?

When log_calls decorates a callable (a function, method, property, . . . ), it “wraps” that callable in a function — the
wrapper of the callable. Subsequently, calls to the decorated callable actually call the wrapper, which delegates to the
original, in between its own pre- and post-processing. This is simply what decorators do.

log_calls gives the wrapper a few attributes pertaining to the wrapped callable, notably log_calls_settings, a
dict-like object that contains the log_calls state of the callable. The keys of log_calls_settings are log_calls
keyword parameters, such as enabled and log_retval — in fact, most of the keyword parameters, though not
all of them.

The settings of a decorated callable are the key/value pairs of its log_calls_settings object, which is an
attribute of the callable’s wrapper. The settings comprise the log_calls state of the callable.

Initially the value of a setting is the value passed to the log_calls decorator for the corresponding keyword parameter,
or the default value for that parameter if no argument was supplied for it. log_calls_settings can then be used
to read and write settings values.

log_calls_settings is documented in The log_calls_settings attribute — the settings API.

18 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Usage of “setting”

We also use the term “settings” to refer to the keys of log_calls_settings, as well as to its key/value pairs.
For example,

“the indent setting”,

or

“enabled is a setting, but override is not”.

This overloading shouldn’t cause any confusion.

The “settings”

The following keyword parameters are settings:

enabled args_sep log_args log_retval log_exit log_call_numbers log_elapsed
indent prefix file mute logger loglevel record_history max_history

As described in the chapter Dynamic Control of Settings, all of a decorated callable’s settings can be accessed through
log_calls_settings, and almost all can be changed on the fly.

The non-settings

The other keyword parameters are not settings:

NO_DECO settings name override omit only

These are directives to the decorator telling it how to initialize itself. Their initial values are not subsequently available
via attributes of the wrapper, and cannot subsequently be changed.

1.6.2 enabled (default: True ( == 1) )

Every example of log_calls that we’ve seen so far has produced output, as they have all used the default value True
of the enabled parameter. Passing enabled=False to the decorator suppresses output:

>>> @log_calls(enabled=False)
... def f(a, b, c):
... pass
>>> f(1, 2, 3) # no output

This is not totally pointless!, because, as with almost all log_calls settings, you can dynamically change the “enabled”
state for a particular function or method. (Later chapters Bulk (Re)Decoration, (Re)Decorating Imports and Dynamic
Control of Settings show ways to do so that could change this enabled setting.) The above decorates f and sets its
initial “enabled” state to False.

Note: The enabled setting is in fact an int. This can be used advantageously.

See the examples Using enabled as a level of verbosity and A metaclass example, which illustrate using different
positive values to specify increasing levels of verbosity in log_calls-related output.

1.6. Keyword Parameters 19



log_calls Documentation, Release 0.3.2

Bypass

If you supply a negative integer as the value of enabled, that is interpreted as bypass: log_calls immediately calls the
decorated callable and returns its value. When the value of enabled is false (False or 0), the decorator performs a
little more processing than that before it delegates to the decorated callable (it increments the number of the call, for
example), though of course less than when enabled is positive (e.g. True).

1.6.3 args_sep (default: ', ')

The args_sep parameter specifies the string used to separate arguments. If the string ends in \n (in particular, if
sep is '\n'), additional whitespace is interspersed so that arguments line up nicely:

>>> @log_calls(args_sep='\\n')
... def f(a, b, c, **kwargs):
... print(a + b + c)
>>> f(1, 2, 3, u='you')
f <== called by <module>

arguments:
a=1
b=2
c=3

**kwargs={'u': 'you'}
6
f ==> returning to <module>

1.6.4 log_args (default: True)

When true, as seen in all examples so far, arguments passed to the decorated callable are written together with their
values. If the callable’s signature contains positional and/or keyword “varargs”, those are included if they’re nonempty.
(These are conventionally named *args and **kwargs, but log_calls will use the parameter names that actually
appear in the callable’s definition.) Any default values of keyword parameters with no corresponding argument are
also logged, on a separate line:

>>> @log_calls()
... def f_a(a, *args, something='that thing', **kwargs): pass
>>> f_a(1, 2, 3, foo='bar')
f_a <== called by <module>

arguments: a=1, *args=(2, 3), **kwargs={'foo': 'bar'}
defaults: something='that thing'

f_a ==> returning to <module>

Here, no argument information is logged at all:

>>> @log_calls(log_args=False)
... def f_b(a, *args, something='that thing', **kwargs): pass
>>> f_b(1, 2, 3, foo='bar')
f_b <== called by <module>
f_b ==> returning to <module>

If a callable has no parameters, log_calls won’t display any “arguments” section:

20 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

>>> @log_calls()
... def f(): pass
>>> f()
f <== called by <module>
f ==> returning to <module>

If a callable has parameters but is passed no arguments, log_calls will display arguments: <none>, plus any
default values used:

>>> @log_calls()
... def ff(*args, **kwargs): pass
>>> ff()
ff <== called by <module>

arguments: <none>
ff ==> returning to <module>

>>> @log_calls()
... def fff(*args, kw='doh', **kwargs): pass
>>> fff()
fff <== called by <module>

arguments: <none>
defaults: kw='doh'

fff ==> returning to <module>

1.6.5 log_retval (default: False)

When this setting is true, values returned by a decorated callable are reported:

>>> @log_calls(log_retval=True)
... def f(a, b, c):
... return a + b + c
>>> _ = f(1, 2, 3)
f <== called by <module>

arguments: a=1, b=2, c=3
f return value: 6

f ==> returning to <module>

Note: By default, log_calls suppresses the return value of __init__ methods, even when log_retval=True
has been passed to a decorator of the method’s class. To override this, you’d have to decorate __init__ itself and
supply log_retval=True. However, there’s no reason to: __init__ returns None.

1.6. Keyword Parameters 21



log_calls Documentation, Release 0.3.2

1.6.6 log_exit (default: True)

When false, this parameter suppresses the ... ==> returning to ... line that indicates the callable’s return
to its caller:

>>> @log_calls(log_exit=False)
... def f(a, b, c):
... return a + b + c
>>> _ = f(1, 2, 3)
f <== called by <module>

arguments: a=1, b=2, c=3

1.6.7 log_call_numbers (default: False)

log_calls keeps a running tally of the number of times a decorated callable has been called. You can display this
number using the log_call_numbers parameter:

>>> @log_calls(log_call_numbers=True)
... def f(): pass
>>> for i in range(2): f()
f [1] <== called by <module>
f [1] ==> returning to <module>
f [2] <== called by <module>
f [2] ==> returning to <module>

The call number is also displayed with the function name when log_retval is true:

>>> @log_calls(log_call_numbers=True, log_retval=True)
... def f():
... return 81
>>> _ = f()
f [1] <== called by <module>

f [1] return value: 81
f [1] ==> returning to <module>

The display of call numbers is particularly valuable in the presence of recursion or reentrance — see the example
Indentation and call numbers with recursion, where the feature is used to good effect.

Clearing the number of calls (setting it to 0)

To reset the number of calls to a decorated function f, so that the next call number will be 1, call the f.stats.
clear_history() method. To reset it for a callable in a class, call wrapper.stats.clear_history()
where wrapper is the callable’s wrapper, obtained via one of the two methods described in the section on accessing
the wrappers of methods.

See The stats.clear_history(max_history=0) method in the Call History and Statistics chapter for details about the
clear_history() method and, more generally, the stats attribute.

22 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.6.8 log_elapsed (default: False)

For performance profiling, you can measure the time a callable took to execute by using the log_elapsed parameter.
When this setting is true, log_calls reports how long it took the decorated callable to complete, in seconds. Two
measurements are reported:

• elapsed time (system-wide, including time elapsed during sleep), given by time.perf_counter(), and

• process time (system + CPU time, i.e. kernel + user time, sleep time excluded), given by time.
process_time().

>>> @log_calls(log_elapsed=True)
... def f(n):
... for i in range(n):
... # do something nontrivial...
... pass
>>> f(5000)
f <== called by <module>

arguments: n=5000
elapsed time: ... [secs], process time: ... [secs]

f ==> returning to <module>

1.6.9 indent (default: True)

The indent parameter, when true, indents each new level of logged messages by 4 spaces, providing a visualization
of the call hierarchy.

A decorated callable’s logged output is indented only as much as is necessary. Here, the even-numbered functions
don’t indent, so the indented functions that they call are indented just one level more than their “inherited” indentation
level:

>>> @log_calls()
... def g1():
... pass
>>> @log_calls(indent=False) # no extra indentation for g2
... def g2():
... g1()
>>> @log_calls()
... def g3():
... g2()
>>> @log_calls(indent=False) # no extra indentation for g4
... def g4():
... g3()
>>> @log_calls()
... def g5():
... g4()
>>> g5()
g5 <== called by <module>
g4 <== called by g5

g3 <== called by g4
g2 <== called by g3

g1 <== called by g2
g1 ==> returning to g2

g2 ==> returning to g3
g3 ==> returning to g4

(continues on next page)

1.6. Keyword Parameters 23



log_calls Documentation, Release 0.3.2

(continued from previous page)

g4 ==> returning to g5
g5 ==> returning to <module>

1.6.10 name (default: '')

The name parameter lets you change the “display name” of a decorated callable. The display name is the name by
which log_calls refers to the callable, in these contexts:

• when logging a call to, and a return from, the callable

• when reporting its return value

• when it’s in a call chain.

A value provided for the name parameter should be a string, of one of the following forms:

• the preferred name of the callable (a string literal), or

• an old-style format string with just one occurrence of %s, which the __name__ of the decorated callable will
replace.

For example:

>>> @log_calls(name='f (STUB)')
... def f(): pass
>>> f()
f (STUB) <== called by <module>
f (STUB) ==> returning to <module>

Another simple example:

>>> @log_calls(name='"%s" (lousy name)', log_exit=False)
... def g(): pass
>>> g()
"g" (lousy name) <== called by <module>

This parameter is useful mainly to simplify the display names of inner functions, and to disambiguate the display
names of getter and deleter property methods.

If the name setting is empty (the default), the display name of a decorated callable is its __qualname__, followed
by (a space and) its __name__ in parentheses if the __name__ is not a substring of the __qualname__.

Example — using name with an inner function

The qualified names of inner functions are ungainly – in the following example, the “qualname” of inner is
outer.<locals>.inner:
>>> @log_calls()
... def outer():
... @log_calls()
... def inner(): pass
... inner()
>>> outer()
outer <== called by <module>

outer.<locals>.inner <== called by outer
outer.<locals>.inner ==> returning to outer

outer ==> returning to <module>

24 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

You can use the name parameter to simplify the displayed name of the inner function:

>>> @log_calls()
... def outer():
... @log_calls(name='%s')
... def inner(): pass
... inner()
>>> outer()
outer <== called by <module>

inner <== called by outer
inner ==> returning to outer

outer ==> returning to <module>

See this section on using the name parameter with setter and deleter property methods, which demonstrates the use
of name to distinguish the methods of properties defined with @property decorators.

1.6.11 prefix (default: '')

The prefix keyword parameter lets you specify a string with which to prefix the name of a callable, thus giving it a new
display name.

Here’s a simple example:

>>> @log_calls(prefix='--- ')
... def f(): pass
>>> f()
--- f <== called by <module>
--- f ==> returning to <module>

Because versions 0.3.0+ of log_calls use __qualname__ for the display name of decorated callables, what had been
the main use case for prefix — prefixing method names with their class name — has gone away. Furthermore,
clearly the name parameter can produce any display name that prefix can. However, prefix is not deprecated,
at least not presently: for what it’s worth, it is a setting and can be changed dynamically, neither of which is true of
name.

1.6.12 file (default: sys.stdout)

The file parameter specifies a stream (an instance of io.TextIOBase) to which log_calls will print its messages.
This value is supplied to the file keyword parameter of the print function, which has the same default value. This
parameter is ignored if you’ve supplied a logger for output using the logger parameter.

When the output stream is the default sys.stdout, log_calls always uses the current meaning of that expression to
obtain its output stream, not just what “sys.stdout” meant at program initialization. Your program can capture, change
and redirect sys.stdout, and log_calls will write to that stream, whatever it currently is. (doctest is a good example
of a program which manipulates sys.stdout dynamically.)

If your program writes to the console a lot, you may not want log_calls messages interspersed with your real output:
your understanding of both logically distinct streams might be hindered, and it may be better to make them actually
distinct. Splitting off the log_calls output can also be useful for understanding or for creating documentation: you
can gather all, and only all, of the log_calls messages in one place. The indent setting will be respected, whether
messages go to the console or to a file.

1.6. Keyword Parameters 25



log_calls Documentation, Release 0.3.2

It’s not easy to test this feature with doctest, so we’ll just give an example of writing to sys.stderr, and then
reproduce the output:

import sys
@log_calls(file=sys.stderr)
def f(n):

if n <= 0:
return 'a'

return '(%s)' % f(n-1)

Calling f(2) returns '((a))' and writes the following to sys.stderr:

f <== called by <module>
arguments: n=2
f <== called by f

arguments: n=1
f <== called by f

arguments: n=0
f ==> returning to f

f ==> returning to f
f ==> returning to <module>

1.6.13 mute (default: log_calls.MUTE.NOTHING)

The mute parameter gives you control over log_calls output from a given decorated callable. It can take any of the
following three numeric values, shown here in increasing order:

log_calls.MUTE.NOTHING (default) doesn’t mute any output

log_calls.MUTE.CALLS mutes all logging of function/method call details, but the output of any
calls to the methods log_calls.print() and log_calls.print_exprs() is allowed through

log_calls.MUTE.ALL mutes all output of log_calls.

mute is a setting — part of the state maintained for a decorated callable — and can be changed dynamically.

Examples are best deferred until the log_*() methods are discussed: see Indent-aware writing methods and muting
— examples.

The mute parameter lets log_calls behave just like the record_history decorator, collecting statistics silently which are
accessible via the stats attribute of a decorated callable. See The record_history Decorator for a precise statement
of the analogy; see the tests/examples in tests/test_log_calls_as_record_history for illustration.

The global mute switch log_calls.mute (default: log_calls.MUTE.NOTHING)

In addition to the mute settings maintained for each decorated callable, log_calls also has a single class attribute
log_calls.mute. It can assume the same three values log_calls.MUTE.NOTHING, log_calls.MUTE.
CALLS, and log_calls.MUTE.ALL. Before each write originating from a call to a decorated callable, log_calls
uses the max of log_calls.mute and the callable’s mute setting to determine whether to output anything. Thus,
realtime changes to log_calls.mute take effect immediately.

To see this in action, refer to Indent-aware writing methods and muting — examples.

26 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.6.14 settings (default: None)

The settings parameter lets you collect several keyword parameter/value pairs in one place and pass them to
log_calls with a single parameter. settings is a useful shorthand if you have, for example, a module with several
log_calls-decorated functions, all with multiple, mostly identical settings which differ from log_calls’s defaults. In-
stead of repeating multiple identical settings across several uses of the decorator, a tedious and error-prone practice,
you can gather them all into one dict or text file, and use the settings parameter to concisely specify them all en
masse. You can use different groups of settings for different sets of functions, or classes, or modules — you’re free to
organize them as you please.

When not None, the settings parameter can be either a dict, or a str specifying the location of a settings file
— a text file containing key=value pairs and optional comments. (Details about settings files, their location and their
format appear below, in settings as a pathname (str).) In either case, the valid keys are the keyword parameters that
are “settings” (as defined in What is a setting?) plus, as a convenience, NO_DECO. Invalid keys are ignored.

The values of settings specified in the dictionary or settings file override log_calls’s default values for those settings,
and any of the resulting settings are in turn overridden by corresponding keywords passed directly to the decorator. Of
course, you don’t have to provide a value for every valid key.

Note: The values can also be indirect values for parameters that allow indirection (almost all do), as described in the
chapter Indirect Values of Keyword Parameters.

settings as a dict

The value of settings can be a dict, or more generally any object d for which it’s true that isinstance(d,
dict). A simple example should suffice. Here is a settings dict and two log_calls-decorated functions using it:

>>> d = dict(
... args_sep=' | ',
... log_args=False,
... log_call_numbers=True,
... )
>>> @log_calls(settings=d)
... def f(n):
... if n <= 0: return
... f(n-1)

>>> @log_calls(settings=d, log_args=True)
... def g(s, t): print(s + t)

>>> f(2)
f [1] <== called by <module>

f [2] <== called by f [1]
f [3] <== called by f [2]
f [3] ==> returning to f [2]

f [2] ==> returning to f [1]
f [1] ==> returning to <module>

>>> g('aaa', 'bbb')
g [1] <== called by <module>

arguments: s='aaa' | t='bbb'
aaabbb
g [1] ==> returning to <module>

1.6. Keyword Parameters 27



log_calls Documentation, Release 0.3.2

settings as a pathname (str)

When the value of the settings parameter is a str, it must be a path to a settings file — a text file containing
key=value pairs and optional comments. If the pathname is just a directory, log_calls looks there for a file named
.log_calls and uses that as a settings file; if the pathname is a file, log_calls uses that file. In either case, if the file
doesn’t exist then no error results nor is any warning issued, and the settings parameter is ignored.

Format of a settings file

A settings file is a text file containing zero or more lines of the form

setting_name=value

Whitespace is permitted around setting_name and value, and is stripped. Blank lines are ignored, as are lines whose
first non-whitespace character is #, which therefore you can use as comments.

Here are the allowed “direct” values for settings in a settings file:

Setting Allowed “direct” value

log_args

log_retval

log_elapsed

log_exit

indent

log_call_numbers

record_history

NO_DECO

boolean
(case-insensitive –
True, False, tRuE, FALSE, etc.)

enabled int, or case-insensitive boolean as above

args_sep

prefix
string, enclosed in quotes

loglevel

max_history

int

file sys.stdout or sys.stderr,
not enclosed in quotes (or None)

logger name of a logger, enclosed in quotes (or None)

28 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Warning: Ill-formed lines, bad values, and nonexistent settings are all ignored, silently.

Settings file example

Here’s an example of what a settings file might contain:

args_sep = ' | '
log_args = False
log_retval = TRUE
logger = 'my_logger'
# file: this is just for illustration, as logger takes precedence.
# file can only be sys.stderr or sys.stdout [*** NOT IN QUOTES! ***] (or None)
file=sys.stderr
# ``log_elapsed`` has an indirect value:
log_elapsed='elapsed_='
# The following lines are bad in one way or another, and are ignored:
prefix=1492
loglevel=
no_such_setting=True
indent

Note: You can use the log_calls.set_defaults() classmethod to change the log_calls default settings, in-
stead of passing the same settings argument to every @log_calls(...) decoration. See the chapter Retrieving
and Changing the Defaults.

Where to find more examples

The test file tests/test_log_call_more.py, in the docstring of the function main__settings(), con-
tains several examples (doctests) of the settings parameter. Two of the tests there use “good” settings files in
the tests/ directory: .log_calls and log_calls-settings.txt. Two more test what happens (nothing)
when specifying a nonexistent file or a file with “bad” settings (tests/bad-settings.txt). Another tests the
settings parameter as a dict.

1.6.15 NO_DECO (default: None)

The NO_DECO parameter prevents log_calls from decorating a callable or class: when true, the decorator returns the
decorated thing itself, unwrapped and unaltered. Intended for use at program startup, it provides a single “true bypass”
switch.

Using this parameter in a settings dict or settings file lets you control “true bypass” with a single switch, e.g. for
production, without having to comment out every decoration.

NO_DECO can only prevent decoration, it cannot undo decoration.

For example, if f is already decorated, then:

1.6. Keyword Parameters 29



log_calls Documentation, Release 0.3.2

f = log_calls(NO_DECO=True)(f)

has no effect: f remains decorated.

Use NO_DECO=True for production

Even even when it’s disabled or bypassed, log_calls imposes some overhead. For production, therefore, it’s best to not
use it at all. One tedious way to guarantee that would be to comment out every @log_calls() decoration in every
source file. NO_DECO allows a more humane approach: Use a settings file or settings dict containing project-wide
settings, including an entry for NO_DECO. For development, use:

NO_DECO=False

and for production, change that to:

NO_DECO=True

Even though it isn’t actually a “setting”, NO_DECO is permitted in settings files and dicts in order to allow this.

Examples

The tests in tests/test_no_deco__via_file.py demonstrate using NO_DECO in an imported dict and in
a settings file.

1.6.16 override (default: False)

The override parameter is mainly intended for use when redecorating functions and classes with the log_calls.
decorate_* classmethods, as discussed in the chapter Bulk (Re)Decoration, (Re)Decorating Imports. override
can also be used with class decorators to give its settings precedence over any explicitly given for callables or inner
classes. See Precedence of inner decorators over outer decorators for a simple example, and Example — decorating
a class in scikit-learn for a larger one.

1.6.17 Parameters Documented In Other Chapters

The remaining parameters are more specialized and require discussion of the contexts in which they are used. For
completeness, we catalog them here, together with links to their documentation.

omit, only (defaults: tuple())

In the chapter Decorating Classes, the section The omit and only keyword parameters (default: ()) documents the two
parameters that control which callables of a class get decorated. The value of each is a string or a sequence of strings;
each string is either the name of a callable, or a “glob” pattern matching names of callables.

• omit — log_calls will not decorate these callables;

• only — log_calls decorates only these callables, excluding any specified by omit

30 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

logger (default: None), loglevel (default: logging.DEBUG)

Using Loggers presents the two parameters that let you output log_calls messages to a Logger:

• logger – a logger name (a str) or a logging.Logger object;

• loglevel (an int) – logging.DEBUG, logging.INFO, . . . , or a custom loglevel.

record_history (default: False), max_history (default: 0)

Call History and Statistics discusses the two parameters governing call history collection:

• record_history governs whether call history is retained, and then

• max_history controls how much (cache size).

1.7 Decorating Classes

In the Decorating methods and Decorating classes sections of the Quick Start chapter we already introduced the use of
log_calls to decorate methods and properties of classes. As shown in the latter section, if you want to decorate every
callable of a class, you don’t have to decorate each one individually: you can simply decorate the class. As that section
also shows, this convenience isn’t an all or nothing affair: you can use the omit and only keyword parameters to a
log_calls class decorator for more fine-grained control over which callables get decorated. The first sections of this
chapter detail the use of those parameters. The remaining sections discuss other topics pertinent to class decoration.

1.7.1 The omit and only keyword parameters (default: ())

These parameters let you concisely specify which methods and properties of a decorated class get decorated. log_calls
ignores omit and only when decorating a function. When not empty, the value of each of these parameters specifies
one or more methods or properties of a decorated class. If you provide just omit, all callables of the class will
be decorated except for those specified by omit. If you provide just only, only the callables it specifies will be
decorated. If you provide both, the callables decorated will be those specified by only, excepting any specified by
omit.

log_calls allows considerable flexibility in the format of values provided for the omit and only parameters. First,
we give the general definition of what those values can be, and then several examples illustrating their use.

Values of the omit and only parameters

For this section only, it’s convenient to define the following term:

callable designator (That’s designator of callables, not a “designator that can be called”, whatever that
might be.)

A string which is one of the following:

• the name of a method

• the name of a property, possibly followed by one of the qualifiers .setter, .getter, .
deleter

• a glob (Unix-style shell pattern) — a string possibly containing

– wildcard characters *, ?

1.7. Decorating Classes 31



log_calls Documentation, Release 0.3.2

– character sets [ s1 s2 . . . sn ] where each sk can be either a character or a character range
sk,1 - sk,2 (e.g. [acr-tx], which denotes acrstx)

– complements of character sets [! s1 s2 . . . sn ] — all characters except those denoted by
[ s1 s2 . . . sn ]

Matching of globs against method and property names is case-sensitive.

A value of the omit or only parameter can be:

• A single callable designator,

• a string consisting of multiple callable designators separated by spaces or by commas and spaces, or

• a sequence (list, tuple, or other iterable) of callable designators.

Examples of callable designators

Given the following class X:

>>> class X():
... def fn(self): pass
... def gn(self): pass
... def hn(self): pass
... @property
... def pr(self): pass
... @pr.setter
... def pr(self, val): pass
... @pr.deleter
... def pr(self): pass
...
... def pdg(self): pass
... def pds(self, val): pass
... pd = property(pdg, pds, None)
... class I():
... def i1(self): pass
... def i2(self): pass

the following table shows several callable designators for X and what they designate. To reduce clutter,
we’ve omitted initial X. from the literals in the righthand column:

32 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Callable designator designates these methods and/or
properties

fn fn

pr.getter pr getter

pr.setter pr setter

pr.deleter pr deleter

pr {pr getter, pr setter, pr deleter}

pr.?etter {pr getter, pr setter}

p* {pr getter, pr setter, pr deleter,
pds, pdg}

?n {fn, gn, hn}

[fg]n {fn, gn}

[f-h]n {fn, gn, hn}

pd {pdg, pds}

pdg, pd.getter pdg

pds, pd.setter pds

pd.deleter nothing (pd has no deleter)

no_such_* nothing (there are no matches)

[f-i]* {fn, gn, hn, I.i1, I.i2}

X.I.*, X.[!f-hp]* {I.i1, I.i2}

X.[!f-ip]* {I.i1, I.i2},
because [!f-ip] matches I

[!f-hp]*, ?[!n]* every callable in classes X and X.I,
because these match X. + anything

* every callable in classes X and X.I

1.7. Decorating Classes 33



log_calls Documentation, Release 0.3.2

Warning: Be aware that:

1. wildcards can match the dot '.' in qualified names;

2. both qualified and unqualified method and property names are matched — e.g. for a method
mymethod in a class C, each callable designator is checked for a match against both
mymethod and C.mymethod.

As the second and third to last examples in the above table illustrate, these matching rules can lead to
surprises, especially when using complements of character sets.

1.7.2 omit and only — Examples

A useful settings dict for the examples of this chapter:

>>> MINIMAL = dict(
... log_args=False,
... log_exit=False
... )

Basic examples

First, simple examples for methods, without wildcards, illustrating possible values for omit and only and the inter-
action of those parameters.

In class A, only f is decorated:

>>> @log_calls(only='f', settings=MINIMAL)
... class A():
... def f(self): pass
... def g(self): pass
>>> a = A(); a.f(); a.g()
A.f <== called by <module>

In class B, f and g are omitted, so only h is decorated (and so, gives output):

>>> @log_calls(omit='f g', settings=MINIMAL)
... class B():
... def f(self): pass
... def g(self): pass
... def h(self): pass
>>> b = B(); b.f(); b.g(); b.h()
B.h <== called by <module>

In class C, only f and h are decorated:

>>> @log_calls(only='f, h', settings=MINIMAL)
... class C():
... def f(self): pass
... def g(self): pass
... def h(self): pass
>>> c = C(); c.f(); c.g(); c.h()

(continues on next page)

34 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

(continued from previous page)

C.f <== called by <module>
C.h <== called by <module>

In class D, only f is decorated:

>>> @log_calls(only=['f', 'g'], omit=('g',), settings=MINIMAL)
... class D():
... def f(self): pass
... def g(self): pass
... def h(self): pass
>>> d = D(); d.f(); d.g(); d.h()
D.f <== called by <module>

Precedence of inner decorators over outer decorators

By default, the explicitly given settings of a callable’s decorator take precedence over those of the decorator of its class:

>>> @log_calls(settings=MINIMAL)
... class E():
... def f(self): pass
... @log_calls(log_exit=True)
... def g(self): pass
>>> E().f(); E().g()
E.f <== called by <module>
E.g <== called by <module>
E.g ==> returning to <module>

The same holds for inner classes: settings provided explicitly to the decorator of an inner class take precedence over
the corresponding settings of the outer class. To give the outer settings priority, supply override=True to the outer
decorator:

>>> @log_calls(settings=MINIMAL, override=True)
... class E():
... def f(self): pass
... @log_calls(log_exit=True)
... def g(self): pass
>>> E().f(); E().g()
E.f <== called by <module>
E.g <== called by <module>

Decorating properties

There are two ways to specify properties: using property as a decorator, and using it as a function, as described in
the Python documentation for property. log_calls handles both approaches. The name of the property alone, with no
appended qualifier, designates all of the property’s existing callables — the getter, setter, and deleter.

1.7. Decorating Classes 35

https://docs.python.org/3/library/functions.html?highlight=property#property


log_calls Documentation, Release 0.3.2

Decorating properties specified with the @property decorator

Python lets you define properties using decorators. You decorate the getter property prop with @property, and then
any corresponding setter and deleter methods with @prop.setter and @prop.deleter respectively.

Using only to decorate just the getter:

>>> @log_calls(only='prop.getter', settings=MINIMAL)
... class A():
... @property
... def prop(self): pass
... @prop.setter
... def prop(self, val): pass
>>> A().prop; A().prop = 17
A.prop <== called by <module>

Using only with the property name — all property methods are decorated:

>>> @log_calls(only='prop', settings=MINIMAL)
... class A():
... @property
... def prop(self): pass
... @prop.setter
... def prop(self, val): pass
... @prop.deleter
... def prop(self): pass
>>> A().prop; A().prop = 17; del A().prop
A.prop <== called by <module>
A.prop <== called by <module>
A.prop <== called by <module>

Using the name parameter with setter and deleter property methods

As the previous example shows, log_calls cannot presently give distinct display names to the different callables of
a property defined by decorators. However, you can use the name parameter to overcome this limitation, as shown
in the following example. (The log_calls decorators come after the property decorators.)

>>> @log_calls(settings=MINIMAL)
... class A():
... @property
... def prop(self): pass
...
... @prop.setter
... @log_calls(name='A.%s.setter')
... def prop(self, val): pass
...
... @prop.deleter
... @log_calls(name='A.%s.deleter')
... def prop(self, val): pass
>>> A().f(); A().prop; A().prop = 17; del A().prop
A.prop <== called by <module>
A.prop.getter <== called by <module>
A.prop.deleter <== called by <module>

36 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Decorating properties specified with the property function

Python also lets you define properties using property as a function. log_calls uses the unique names of the methods
that comprise the property.

>>> @log_calls(omit='prop.setter', settings=MINIMAL)
... class XX():
... def getxx(self): pass
... def setxx(self, val): pass
... def delxx(self): pass
... prop = property(getxx, setxx, delxx)
>>> xx = XX(); xx.prop; xx.prop = 5; del xx.prop
XX.getxx <== called by <module>
XX.delxx <== called by <module>

1.7.3 Decorating inner classes

By default, the explicitly given settings of a decorator of (or within) an inner class take precedence over those of the
decorator of its outer class.

>>> @log_calls(settings=MINIMAL)
... class O():
... def f(self): pass
... class I():
... @log_calls(log_call_numbers=True)
... def fi(self): pass
... def gi(self): pass
O().f(); O().I().fi(); O().I().gi()
O.f <== called by <module>
O.I.fi [1] <== called by <module>
O.I.gi <== called by <module>

To give the outer settings priority, supply override=True to the outer decorator, as illustrated above in Precedence
of inner decorators over outer decorators.

This default precedence of outer over inner is different for omit, in a way that attempts to meet expectations:

only on inner and outer class decorators

When present and nonempty, inner only overrides outer only. In I1, only g1 is decorated, despite the outer class’s
only specifier:

>>> @log_calls(only='*_handler', settings=MINIMAL)
... class O():
... def f(self): pass
... def my_handler(self): pass
... def their_handler(self): pass
... @log_calls(only='g1')
... class I1():
... def g1(self): pass
... def some_handler(self): pass
>>> oi1 = O.I1(); oi1.g1(); oi1.some_handler()
O.I1.g1 <== called by <module>

1.7. Decorating Classes 37



log_calls Documentation, Release 0.3.2

omit on inner and outer class decorators

omit is cumulative — inner omit is added to outer omit:

>>> @log_calls(omit='*_handler', settings=MINIMAL)
... class O():
... def f(self): pass
... def my_handler(self): pass
... def their_handler(self): pass
... @log_calls(omit='*_function')
... class I1():
... def g1(self): pass
... def some_handler(self): pass
... def some_function(self): pass
>>> oi1 = O.I1(); oi1.g1(); oi1.some_handler(); oi1.some_function()
O.I1.g1 <== called by <module>

Further examples

For more examples of inner class decoration, consult the docstrings of the functions
main__lc_class_deco__inner_classes() and main__lc_class_deco__omit_only__inner_classes()
in tests/test_log_calls__class_deco.py.

1.7.4 log_calls does not decorate __repr__

To avoid infinite, possibly indirect recursions, log_calls does not itself decorate __repr__ methods, but it will
decorate them with reprlib.recursive_repr():

>>> @log_calls()
... class A():
... def __init__(self, x): self.x = x
... def __repr__(self): return str(self.x)

The __init__ method is decorated:

>>> a = A(5)
A.__init__ <== called by <module>

arguments: self=<__main__.A object at 0x...>, x=5
A.__init__ ==> returning to <module>

but __repr__ is not:

>>> print(a) # no log_calls output
5

38 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.8 Writing log_calls-Aware Debugging Messages

log_calls provides the log_calls.print method as a better alternative to the global print function for writing
debugging messages. It also provides the log_calls.print_exprs method as an easy way to “dump” variables
and expressions together with their values.

log_calls.print writes to the log_calls output stream — whether that’s a console stream, file or logger —
where its output is properly synced and aligned with respect to the decorated callable it was called from. If later you
undecorate the callable (for example, by deleting or commenting out the decorator, or by passing it NO_DECO=True),
you don’t have to remove the call to log_calls.print, because by default the method writes something only when
called from within a decorated callable, and doesn’t raise an exception otherwise.

It’s quite typical to use debugging messages to print out (or “dump”) the values of local variables and expressions,
together with labels. Accomplishing this with print or even log_calls.print usually requires ad-hoc though
boilerplate string formatting. As a convenience, log_calls provides the log_calls.print_exprs() method, which prints
variables and expressions together with their values in the context of the caller.

1.8.1 The log_calls.print() method

When you call log_calls.print('my message') from within a decorated callable f, my message appears
in the log_calls output stream, between the “entering” and “exiting” parts of the log_calls report for the call to f,
aligned with the “arguments” section:

>>> @log_calls()
... def f(x):
... log_calls.print('About to try new approach...')
... return 4 * x
>>> f(2)
f <== called by <module>

arguments: x=2
About to try new approach...

f ==> returning to <module>
8

If you undecorate the callable — say, by deleting or commenting out the decorator, or by passing it NO_DECO=True
— by default you don’t have to comment out the call to log_calls.print, as it won’t write anything and won’t
raise an exception:

>>> # @log_calls()
>>> def f(x):
... log_calls.print('About to try new approach...')
... return 4 * x
>>> f(2)
8

You can change this default by setting the log_calls global variable log_calls.
print_methods_raise_if_no_deco to True, as discussed below.

1.8. Writing log_calls-Aware Debugging Messages 39



log_calls Documentation, Release 0.3.2

log_calls.print() details

log_calls.print(*msgs, sep=' ', extra_indent_level=1, prefix_with_name=False)
Join one or more messages with sep, and write the result to the log_calls output destination of the caller, a
decorated callable. The “messages” are strings, or objects to be displayed as strs. The method does nothing if
no messages are passed.

Parameters

• msgs – messages to write.

• extra_indent_level (int) – a number of 4-column-wide indent levels specifying
where to begin writing that message. This value x 4 is an offset in columns from the left
margin of the visual frame established by log_calls – that is, an offset from the column in
which the callable’s entry and exit messages begin. The default of 1 aligns the message with
the “arguments: ” line of log_calls’s output.

• prefix_with_name (bool) – If true, the final message is prefaced with the name of
the callable, plus its call number in square brackets if the log_call_numbers setting is
true.

Raises AttributeError if called from within an undecorated callable and log_calls.
print_methods_raise_if_no_deco is true.

Note: If the mute setting of the caller is log_calls.MUTE.CALLS, log_calls.print() forces
prefix_with_name to True, and extra_indent_level to 0. A little reflection should reveal that
these are sensible adjustments. See the following sections for examples.

1.8.2 Writing expressions and their values with log_calls.print_exprs()

log_calls.print_exprs() is a convenience method built upon log_calls.print() which makes it easy
to print variables and expressions together with their values.

The Writing log_calls-aware debugging messages section of the Quick Start chapter contains a
few examples. Others can be found in the docstring of the function test__log_exprs() in
tests/test_log_calls_v30_minor_features_fixes.py, and in the test module tests/
test_log_calls_log_methods.py.

log_calls.print_exprs() details

log_calls.print_exprs(*exprs, sep=', ', extra_indent_level=1, prefix_with_name=False, prefix='', suf-
fix='')

Evaluate each expression in exprs in the context of the caller, a decorated callable; make a string expr = val
from each, and pass those strings to (the internal method called by) log_calls.print() as messages to
write, separated by sep.

Parameters

• exprs (sequence of str) – expressions to evaluate and log with their values

• sep – separator for expr = val substrings

• extra_indent_level – as for log_calls.print()

• prefix_with_name – as for log_calls.print()

• prefix – additional text to prepend to output message.

40 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

• suffix – additional text to append to output message.

Raises AttributeError if called from within an undecorated callable and log_calls.
print_methods_raise_if_no_deco is true.

1.8.3 The global variable log_calls.print_methods_raise_if_no_deco (de-
fault: False)

By default (when print_methods_raise_if_no_deco == False), if you call log_calls.log_* from
within a method or function that isn’t decorated, it does nothing (except waste a few cycles). You can comment
out or delete the @log_calls decorator, or use the NO_DECO parameter to suppress decoration, and the .log_*
method calls will play nicely: they won’t output anything, and the calls won’t raise an exception. In short, leaving the
log_calls.log_* lines uncommented is as benign as it can be.

But probably at some point you do want to know when you have lingering code that’s supposedly development-only.
log_calls will inform you of that if you set log_calls.print_methods_raise_if_no_deco to True (or
any truthy value).

When this flag is true, calls to log_calls.print and log_calls.print_exprs from within an undeco-
rated function or method will raise AttributeError. This compels you to comment out or delete any calls to
log_calls.log_* from within undecorated functions or methods. (A call to log_calls.log_* from within a
callable that never was decorated is just a mistake, and it should raise an exception; with this flag set to true, it will.)

1.8.4 Indent-aware writing methods and muting — examples

Presently, “muting” has three states, of a possible four:

• log_calls.MUTE.NOTHING — mute nothing

• log_calls.MUTE.CALLS — mute the output of the @log_calls decorators while allowing the output of
the log_calls.log_* methods

• log_calls.MUTE.ALL — mute all log_calls output

There’s a global mute, log_calls.mute, and each decorated callable has its own mute setting.

Examples using the mute setting

When a decorated callable is not muted (its mute setting is log_calls.MUTE.NOTHING, i.e. False, the default),
log_calls produces output as do log_calls.print() and log_calls.print_exprs():

>>> @log_calls()
... def f():
... log_calls.print('Hello, world!')
>>> f()
f <== called by <module>

Hello, world!
f ==> returning to <module>

When the callable’s mute setting is log_calls.MUTE.CALLS, no extra indent level is added, and messages are
prefixed with the callable’s display name:

1.8. Writing log_calls-Aware Debugging Messages 41



log_calls Documentation, Release 0.3.2

>>> f.log_calls_settings.mute = log_calls.MUTE.CALLS
>>> f()
f: Hello, world!

When the callable’s mute setting is log_calls.MUTE.ALL, log_calls.print() and log_calls.
print_exprs() produce no output:

>>> f.log_calls_settings.mute = log_calls.MUTE.ALL
>>> f() # (no output)

Using global mute

Setting log_calls.mute = log_calls.MUTE.CALLS mutes decorator output from all decorated callables,
allowing only output from log_calls.log_* methods.

global mute interactions with the mute setting — examples

First, define a couple of simple functions:

>>> @log_calls()
... def g(): log_calls.print("Hi")
>>> @log_calls()
... def f(): log_calls.print("Hi"); g()

Assume that log_calls.mute == log_calls.MUTE.NOTHING, which is the default. Calling f() gives all
possible output:

>>> f()
f <== called by <module>

Hi
g <== called by f

Hi
g ==> returning to f

f ==> returning to <module>

Now change log_calls.mute, call f(), and observe the effects:

>>> log_calls.mute = log_calls.MUTE.CALLS
>>> f()
f: Hi

g: Hi

>>> log_calls.mute = log_calls.MUTE.ALL
>>> f() # (no output)

Now alter log_calls.mute and g.log_calls_settings.mute, call f(), and observe the effects:

>>> log_calls.mute = log_calls.MUTE.NOTHING
>>> g.log_calls_settings.mute = log_calls.MUTE.CALLS
>>> f()
f <== called by <module>

Hi
g: Hi

f ==> returning to <module>

42 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

>>> log_calls.mute = log_calls.MUTE.CALLS
>>> g.log_calls_settings.mute = log_calls.MUTE.ALL
>>> f()
f: Hi

Further examples can be found in tests/test_log_calls_v30_minor_features_fixes.
py. test__global_mute() illustrate that global mute is always checked in realtime;
test__log_message__indirect_mute() illustrates using an indirect value for the mute setting.

1.8.5 Using log_calls.print() in classes

The following class illustrates all possibilities of calling log_calls.print() from a method. To reduce clutter in
this example, log_calls call output is muted, and therefore .print() automatically prefixes its output with the name
of the caller, and doesn’t indent by an extra 4 spaces:

>>> @log_calls(omit='no_deco', mute=log_calls.MUTE.CALLS)
... class B():
... def __init__(self):
... log_calls.print('Hi')
... def method(self):
... log_calls.print('Hi')
... def no_deco(self):
... log_calls.print('Hi')
... @classmethod
... def clsmethod(cls):
... log_calls.print('Hi')
... @staticmethod
... def statmethod():
... log_calls.print('Hi')
...
... @property
... def prop(self):
... log_calls.print('Hi')
... @prop.setter
... @log_calls(name='B.%s.setter') # o/w, display name of setter is also 'B.prop'
... def prop(self, val):
... log_calls.print('Hi')
...
... def setx(self, val):
... log_calls.print('Hi from setx alias x.setter')
... def delx(self):
... log_calls.print('Hi from delx alias x.deleter')
... x = property(None, setx, delx)

>>> b = B()
B.__init__: Hi
>>> b.method()
B.method: Hi
>>> b.no_deco() # outputs nothing
>>> b.statmethod()
B.statmethod: Hi
>>> b.clsmethod()
B.clsmethod: Hi

(continues on next page)

1.8. Writing log_calls-Aware Debugging Messages 43



log_calls Documentation, Release 0.3.2

(continued from previous page)

>>> b.prop
B.prop: Hi
>>> b.prop = 17
B.prop.setter: Hi
>>> b.x = 13
B.setx: Hi from setx alias x.setter
>>> del b.x
B.delx: Hi from delx alias x.deleter

Observe that the call to b.no_deco() does nothing, even though the method isn’t decorated. If log_calls.
print_methods_raise_if_no_decowere true, the call from b.no_deco() to log_calls.printwould
raise AttributeError.

1.8.6 wrapper.log_message(), wrapper.log_exprs() [deprecated]

Before log_calls.print() and log_calls.print_exprs() existed, the methods log_message() and
log_exprs() provided similar functionality. Using these within a class was (and remains) somewhat clumsy: a
method or property must first access its own “wrapper” order to use these methods. The section on accessing wrappers
of methods shows how to do so.

1.9 Using Loggers

log_calls works well with loggers obtained from Python’s logging module, objects of type logging.Logger.
If you use the logger keyword parameter, log_calls will write to the specified logger rather than to a file or stream
using print.

We’ll need a logger for the examples of this chapter — a simple one with a single handler that writes to the console.
Because doctest doesn’t capture output written to stderr (the default stream to which console handlers write), we’ll
send the console handler’s output to stdout, using the format <loglevel>:<loggername>:<message>.

>>> import logging
>>> import sys
>>> ch = logging.StreamHandler(stream=sys.stdout)
>>> c_formatter = logging.Formatter('%(levelname)8s:%(name)s:%(message)s')
>>> ch.setFormatter(c_formatter)
>>> logger = logging.getLogger('a_logger')
>>> logger.addHandler(ch)
>>> logger.setLevel(logging.DEBUG)

1.9.1 The logger keyword parameter (default: None)

The logger keyword parameter tells log_calls to write its output using that logger rather than to the file setting
using the print function. If the logger setting is nonempty, it takes precedence over file. The value of logger
can be either a logger instance (a logging.Logger) or a string giving the name of a logger, which will be passed
to logging.getLogger().

>>> @log_calls(logger=logger)
... def somefunc(v1, v2):
... logger.debug(v1 + v2)

(continues on next page)

44 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

(continued from previous page)

>>> somefunc(5, 16)
DEBUG:a_logger:somefunc <== called by <module>
DEBUG:a_logger: arguments: v1=5, v2=16
DEBUG:a_logger:21
DEBUG:a_logger:somefunc ==> returning to <module>

Instead of passing the logger instance as above, we can simply pass its name, 'a_logger':

>>> @log_calls(logger='a_logger', indent=False)
... def anotherfunc():
... somefunc(17, 19)
>>> anotherfunc()
DEBUG:a_logger:anotherfunc <== called by <module>
DEBUG:a_logger:somefunc <== called by anotherfunc
DEBUG:a_logger: arguments: v1=17, v2=19
DEBUG:a_logger:36
DEBUG:a_logger:somefunc ==> returning to anotherfunc
DEBUG:a_logger:anotherfunc ==> returning to <module>

This works because

“all calls to logging.getLogger(name) with a given name return the same logger instance”, so
that “logger instances never need to be passed between different parts of an application”.

—Python documentation for logging.getLogger().

Note: If the value of logger is a Logger instance that has no handlers (which can happen if you specify a logger
name for a (theretofore) nonexistent logger), that logger won’t be able to write anything, so log_calls will fall back to
print.

1.9.2 The loglevel keyword parameter (default: logging.DEBUG)

log_calls also takes a loglevel keyword parameter, an int whose value must be one of the logging module’s
constants - logging.DEBUG, logging.INFO, etc. – or a custom logging level if you’ve added any. log_calls
writes output messages using logger.log(loglevel, ...). Thus, if the logger’s log level is higher than
loglevel, no output will appear:

>>> logger.setLevel(logging.INFO) # raise logger's level to INFO
>>> @log_calls(logger='a_logger', loglevel=logging.DEBUG)
... def f(x, y, z):
... return y + z
>>> # No log_calls output from f
>>> # because loglevel for f < level of logger
>>> f(1,2,3)
5

1.9. Using Loggers 45

https://docs.python.org/3/library/logging.html?highlight=logging.getlogger#logging.getLogger


log_calls Documentation, Release 0.3.2

1.9.3 Where to find further examples

A realistic example can be found in Using a logger with multiple handlers that have different loglevels.

Yet more examples appear in the docstrings of the function

main_logging()

in test_log_calls.py, and of the functions

main__more_on_logging__more(), main__logging_with_indent__minimal_formatters(),
and main__log_message__all_possible_output_destinations()

in test_log_calls_more.py.

1.10 Retrieving and Changing the Defaults

1.10.1 log_calls classmethods set_defaults(), reset_defaults()

The settings parameter lets you specify an entire collection of settings at once. If you find that you’re passing the same
settings dict or settings file to most log_calls decorators in a program, log_calls offers a further economy. At program
startup, you can use the log_calls.set_defaults classmethod to change the log_calls defaults to the settings
you want, and eliminate most of the settings arguments.

classmethod log_calls.set_defaults(new_default_settings=None, **more_defaults)
Change the log_calls default values for settings, different from the “factory defaults”.

Parameters

• new_default_settings (dict (a settings dict) or str (pathname for a settings file))
– a settings dict or settings file: any valid value for the settings parameter.

• more_defaults – keyword parameters where every key is a setting. These override
settings in new_default_settings.

The new defaults are not retroactive! (Settings of already-decorated callables remain unchanged.) They apply
to every decoration that occurs subsequently.

You can easily undo all changes effected by set_defaults():

classmethod log_calls.reset_defaults()
Restore the “factory default” defaults.

Examples

Although these are “toy” examples, they illustrate how the *_defaults() methods behave:

Decorate f with “factory defaults”:

>>> @log_calls()
... def f(x, y): return x

Define a settings dict:

>>> new_settings = dict(
... log_call_numbers=True,
... log_exit=False,

(continues on next page)

46 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

(continued from previous page)

... log_retval=True,

... )

Call set_defaults() with the above settings dict, and in addition change the default for args_sep:

>>> log_calls.set_defaults(new_settings, args_sep=' $ ')

Decorate g while these defaults are in force:

>>> @log_calls()
... def g(x,y): return y

Restore the “factory defaults”:

>>> log_calls.reset_defaults()

and decorate h:

>>> @log_calls()
... def h(u, v): return v

Call f, g, and h: only g will use the defaults of the set_defaults() call:

>>> _ = f(0, 1); _ = g(2, 3); _ = h(4, 5)
f <== called by <module>

arguments: x=0, y=1
f ==> returning to <module>
g [1] <== called by <module>

arguments: x=2 $ y=3
g [1] return value: 3

h <== called by <module>
arguments: u=4, v=5

h ==> returning to <module>

1.10.2 log_calls classmethods get_defaults_OD(), get_factory_defaults_OD()

For convenience, log_calls also provides classmethods for retrieving the current defaults and the “factory defaults”,
each as an OrderedDict:

classmethod log_calls.get_defaults_OD()
Return an OrderedDict of the current log_calls defaults.

classmethod log_calls.get_factory_defaults_OD()
Return an OrderedDict of the log_calls “factory defaults”.

1.10. Retrieving and Changing the Defaults 47



log_calls Documentation, Release 0.3.2

Examples

If log_calls.set_default() has not been called, then the current defaults are the factory defaults:

>>> log_calls.get_defaults_OD() == log_calls.get_factory_defaults_OD()
True

The dictionaries returned by the get*_defaults_OD() methods can be compared with those obtained from a
callable’s log_calls_settings.as_OD() or log_calls_settings.as_dict() method to determine
whether, and if so how, the callable’s settings differ from the defaults.

>>> def dict_minus(d1, d2: 'Mapping') -> dict:
... """Return a dict of the "dictionary difference" of d1 and d2:
... all items in d1 such that either the key is not in d2,
... or the key is in both but values differ.
... """
... return {
... key: val for key, val in d1.items()
... if not (key in d2 and val == d2[key])
... }

>>> @log_calls(log_exit=False)
>>> def func(): pass
>>> dict_minus(func.log_calls_settings.as_OD(), log_calls.get_defaults_OD())
{'log_exit': False}

1.11 Bulk (Re)Decoration, (Re)Decorating Imports

This chapter discusses the log_calls.decorate_* classmethods. These methods allow you to:

• decorate or redecorate functions and classes,

• decorate an entire class hierarchy (a class and all its subclasses), and even

• decorate all classes and/or functions in a module.

These methods are handy in situations where altering source code is impractical (too many things to decorate) or
questionable practice (third-party modules and packages). They can also help you learn a new codebase, by shedding
light on its internal operations.

The decorate_* methods provide another way to dynamically change the settings of already-decorated functions
and classes.

Like any decorator, log_calls is a functional — a function that takes a function argument and returns a function. The
following typical use:

@log_calls()
def f(): pass

is equivalent to:

f = log_calls()(f)

If f occurs in your own code, then no doubt you’ll prefer the former. The log_calls.decorate_* methods let
you decorate f when its definition does not necessarily appear in your code.

48 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Note: You can’t decorate Python builtins. Attempting to do is harmless (anyway, it’s supposed to be!), and log_calls
will return the builtin class or callable unchanged. For example, the following have no effect:

log_calls.decorate_class(dict)
log_calls.decorate_class(dict, only='update')
log_calls.decorate_function(dict.update)

1.11.1 Decorating classes programmatically

Decorating a class and optionally, all of its subclasses

classmethod log_calls.decorate_class(klass: type, decorate_subclasses=False, **set-
ting_kwargs)→ None

Decorate class klass and, optionally, all of its descendants recursively. If decorate_subclasses ==
True, and if any subclasses are decorated, their explicitly given settings remain unchanged by those in
setting_kwargs unless override=True is in setting_kwargs.

log_calls.decorate_class(C, **kwds) is basically a syntactically sweetened version of
log_calls(**kwds)(C), with the addition of the flag parameter decorate_subclasses.
There’s another difference, however: log_calls.decorate_class(...) returns None, whereas
log_calls(**kwds)(C) returns C.

Decorating a class and all of its subclasses

classmethod log_calls.decorate_hierarchy(baseclass: type, **setting_kwargs)→ None
Decorate baseclass and, recursively, all of its descendants. If any subclasses are directly decorated, their
explicitly given settings remain unchanged by those in setting_kwargs unless override=True is in
setting_kwargs.

This is just a shorthand for log_calls.decorate_class(baseclass,
decorate_subclasses=True, **setting_kwargs).

1.11.2 Decorating functions programmatically

Decorating a function in your namespace

classmethod log_calls.decorate_function(f: ‘Callable’, **setting_kwargs)→ None
Decorate f using settings_kwds, and replace the definition of f.__name__ with the decorated function
(i.e. the wrapper) in the global namespace of the caller.

Parameters

• f – a function object, with no package/module qualifier: however it would be referred to in
code at the point of the call to decorate_function. f itself refers to a function which
is either defined in or imported into the module of the caller.

• setting_kwargs – settings for decorator

log_calls.decorate_function(f, **kwds) is basically a syntactically sweetened version of
log_calls(**kwds)(f). However, log_calls.decorate_function(...) returns None,
whereas log_calls(**kwds)(f) returns the wrapper of f.

1.11. Bulk (Re)Decoration, (Re)Decorating Imports 49



log_calls Documentation, Release 0.3.2

Decorating an “external” function in a package

classmethod log_calls.decorate_package_function(f: ‘Callable’, **setting_kwargs) →
None

Decorate f using settings in settings_kwds; replace the definition of f.__name__ with the decorated
function in the __dict__ of the module of f.

Parameters

• f – a function object, qualified with a package, e.g. somepackage.somefunc, however
it would be referred to in code at the point of a call to decorate_package_function.

• setting_kwargs – settings for decorator

Decorating an “external” function in a module

classmethod log_calls.decorate_module_function(f: ‘Callable’, **setting_kwargs) →
None

Decorate f using settings in settings_kwds; replace the definition of f.__name__ with the decorated
function in the __dict__ of the module of f.

Parameters

• f – a function object, qualified with a module, e.g. thatmodule.afunc, however it
would be referred to in code at the point of a call to decorate_module_function.

• setting_kwargs – settings for decorator

1.11.3 Decorating all functions and/or classes in a module

decorate_module lets you decorate the functions and/or classes of an imported module:

classmethod log_calls.decorate_module(cls, mod: ‘module’, functions: bool = True, classes:
bool = True, **setting_kwargs)→ None

Parameters

• mod – module whose members are to be decorated

• functions – decorate all functions in mod if true

• classes – decorate all classes in mod if true

• setting_kwargs – keyword parameters for decorator

Raises TypeError

1.11.4 Examples

These modules in the tests/ subdirectory contain several examples:

• test_decorate_module.py The docstring of the function test_decorate_module() contains sim-
ple tests of decorating the module tests/some_module.py.

A few examples/tests use the Skikit-Learn package if it’s installed. (The following subsection reproduces one of them.)
Those in these two modules are run by run_tests.py:

• test_decorate_sklearn_KMeans.py

• test_decorate_sklearn_KMeans_functions.py

50 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

The test in the following module decorates an entire module of Skikit-Learn:

• _test_decorate_module_of_sklearn.py

As the settings it imposes mess up the other sklearn tests, it is not run by run_tests.py. It can be run separately.

Example — decorating a class in scikit-learn

This example demonstrates:

• decorating a class that’s not part of your project (unless you’re working on scikit-learn:), and

• using the override parameter with one of the log_calls.decorate_* functions to dynamically change
the settings of (all the callables of) an already-decorated class.

Except for the log_calls.decorate_* calls, the following code is excerpted from the sklearn site, e.g. Demon-
stration of k-means assumptions. The double backslashes in the two added lines accommodate doctest.

>>> from log_calls import log_calls
>>> from sklearn.cluster import KMeans
>>> from sklearn.datasets import make_blobs
>>> n_samples = 1500
>>> random_state = 170
>>> X, y = make_blobs(n_samples=n_samples, random_state=random_state)

First, let’s decorate the class hierarchy, with settings that show just the call tree:

>>> log_calls.decorate_hierarchy(KMeans, log_args=False) ### THIS LINE ADDED

Now let’s call KMeans.fit_predict:

>>> y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)
KMeans.__init__ <== called by <module>
KMeans.__init__ ==> returning to <module>
KMeans.fit_predict <== called by <module>

KMeans.fit <== called by KMeans.fit_predict
KMeans._check_fit_data <== called by KMeans.fit
KMeans._check_fit_data ==> returning to KMeans.fit

KMeans.fit ==> returning to KMeans.fit_predict
KMeans.fit_predict ==> returning to <module>

MiniBatchKMeans is a subclass of KMeans so that class is decorated too:

>>> mbk = MiniBatchKMeans(init='k-means++', n_clusters=2, batch_size=45,
... n_init=10, max_no_improvement=10)
MiniBatchKMeans.__init__ <== called by <module>

KMeans.__init__ <== called by MiniBatchKMeans.__init__
KMeans.__init__ ==> returning to MiniBatchKMeans.__init__

MiniBatchKMeans.__init__ ==> returning to <module>

Now let’s call MiniBatchKMeans.fit:

>>> mbk.fit(X)
MiniBatchKMeans.fit <== called by <module>

MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit
MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit

MiniBatchKMeans.fit ==> returning to <module>
MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++',

(continues on next page)

1.11. Bulk (Re)Decoration, (Re)Decorating Imports 51

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#example-cluster-plot-kmeans-assumptions-py
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#example-cluster-plot-kmeans-assumptions-py


log_calls Documentation, Release 0.3.2

(continued from previous page)

init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,
n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,
verbose=0)

To view arguments as well (and trigger more output), change setting to log_args=True and use
override=True. Here, we call log_calls.decorate_class for class KMeans with the parameter
decorate_subclasses=True, which is equivalent to calling log_calls.decorate_hierarchy:

>>> log_calls.decorate_class(KMeans, decorate_subclasses=True,
... log_args=True, args_sep='\\n',
... override=True)
>>> mbk.fit(X)
MiniBatchKMeans.fit <== called by <module>

arguments:
self=MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++',
init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,
n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,
verbose=0)
X=array([[ -5.19811282e+00, 6.41869316e-01],

[ -5.75229538e+00, 4.18627111e-01],
[ -1.08448984e+01, -7.55352273e+00],
...,
[ 1.36105255e+00, -9.07491863e-01],
[ -3.54141108e-01, 7.12241630e-01],
[ 1.88577252e+00, 1.41185693e-03]])

defaults:
y=None

MiniBatchKMeans._labels_inertia_minibatch <== called by MiniBatchKMeans.fit
arguments:

self=MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++',
init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,
n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,
verbose=0)
X=array([[ -5.19811282e+00, 6.41869316e-01],

[ -5.75229538e+00, 4.18627111e-01],
[ -1.08448984e+01, -7.55352273e+00],
...,
[ 1.36105255e+00, -9.07491863e-01],
[ -3.54141108e-01, 7.12241630e-01],
[ 1.88577252e+00, 1.41185693e-03]])

MiniBatchKMeans._labels_inertia_minibatch ==> returning to MiniBatchKMeans.fit
MiniBatchKMeans.fit ==> returning to <module>
MiniBatchKMeans(batch_size=45, compute_labels=True, init='k-means++',

init_size=None, max_iter=100, max_no_improvement=10, n_clusters=2,
n_init=10, random_state=None, reassignment_ratio=0.01, tol=0.0,
verbose=0)

Note: the ellipses in the values of the numpy array X are produced by its repr.

52 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.12 Dynamic Control of Settings

Sometimes, you’ll need or want to change a log_calls setting for a decorated callable on the fly. The major impedi-
ment to doing so is that the values of the log_calls parameters are set once the definition of the decorated callable is
interpreted. Those values are established once and for all when the Python interpreter processes the definition.

1.12.1 The problem, and log_calls solutions

Even if a variable is used as a parameter value, its value at the time Python processes the definition is “frozen” for
the created callable object. What gets stored is not the variable, but its value. Subsequently changing the value of the
variable will not affect the behavior of the decorator.

For example, suppose DEBUG is a module-level variable initialized to False:

>>> DEBUG = False

and you use this code:

>>> @log_calls(enabled=DEBUG)
... def foo(**kwargs): pass
>>> foo() # No log_calls output: DEBUG is False

If later you set DEBUG = True and call foo, that call still won’t be logged, because the enabled setting of foo
is bound to the original value of DEBUG, established when the definition was processed:

>>> DEBUG = True
>>> foo() # Still no log_calls output

This is simply how default values of keyword parameters work in Python.

log_calls provides three ways to overcome this limitation and dynamically control the settings of a decorated callable:

• the decorate_* classmethods, described in the previous chapter Bulk (Re)Decoration, (Re)Decorating Im-
ports,

• the log_calls_settings attribute, described in this chapter, which provides a mapping interface and an
attribute-based interface to settings, and

• indirect values, as described in the next chapter Indirect Values of Keyword Parameters.

1.12.2 The log_calls_settings attribute — the settings API

log_calls adds an attribute log_calls_settings to the wrapper of a decorated callable, through which you can
access the settings for that callable. This attribute is an object that lets you read and write the settings of the callable
via a mapping (dict-like) interface, and equivalently, via attributes of the object. The mapping keys and the attribute
names are simply the log_calls settings keywords. log_calls_settings also implements many of the standard
dict methods for interacting with the settings in familiar ways.

1.12. Dynamic Control of Settings 53



log_calls Documentation, Release 0.3.2

The mapping interface and the attribute interface to settings

Once you’ve decorated a callable with log_calls,

>>> @log_calls()
... def f(*args, **kwargs):
... return 91

you can access and change its settings via the log_calls_settings attribute of the decorated callable, which
behaves like a dictionary. You can read and write settings using the log_calls keywords as keys:

>>> f.log_calls_settings['enabled']
True
>>> f.log_calls_settings['enabled'] = False
>>> _ = f() # no output (not even 91, because of "_ = ")
>>> f.log_calls_settings['enabled']
False
>>> f.log_calls_settings['log_retval']
False
>>> f.log_calls_settings['log_retval'] = True
>>> f.log_calls_settings['log_elapsed']
False
>>> f.log_calls_settings['log_elapsed'] = True

You can also use the same keywords as attributes of log_calls_settings instead of as keys to the mapping
interface — they’re completely equivalent:

>>> f.log_calls_settings.log_elapsed
True
>>> f.log_calls_settings.log_call_numbers
False
>>> f.log_calls_settings.log_call_numbers = True
>>> f.log_calls_settings.enabled = True # turn it back on!
>>> _ = f()
f [1] <== called by <module>

arguments: <none>
f [1] return value: 91
elapsed time: ... [secs], process time: ... [secs]

f [1] ==> returning to <module>

>>> f.log_calls_settings.log_args = False
>>> f.log_calls_settings.log_elapsed = False
>>> f.log_calls_settings.log_retval = False
>>> _ = f()
f [2] <== called by <module>
f [2] ==> returning to <module>

log_calls_settings has a length len(log_calls_settings); its keys and items() can be iterated
through; you can use in to test for key membership; and it has an update() method. As with an ordinary dictio-
nary, attempting to access a nonexistent setting raises KeyError. Unlike an ordinary dictionary, you can’t add new
keys – the log_calls_settings dictionary is closed to new members, and attempts to add one will also raise
KeyError.

54 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

The update(), as_dict(), and as_OD() methods

The update() method of the log_calls_settings object lets you update several settings at once:

>>> f.log_calls_settings.update(
... log_args=True, log_elapsed=False, log_call_numbers=False,
... log_retval=False)
>>> _ = f()
f <== called by <module>

arguments: <none>
f ==> returning to <module>

You can retrieve the entire collection of settings as a dict using as_dict(), and as an OrderedDict using
as_OD(). Either can serve as a snapshot of the settings, so that you can change settings temporarily, use the new
settings, and then use update() to restore settings from the snapshot. in addition to taking keyword arguments,
as shown above, update() can take one or more dicts – in particular, a dictionary retrieved from one of the as_*
methods:

wrapper.log_calls_settings.update(*dicts, **d_settings)→ None
Update the settings from all dicts in dicts, in order, and then from d_settings. Allow but ignore at-
tempts to write to immutable keys (max_history). This permits the user to retrieve a copy of the settings
with as_dict() or as_OD(), obtaining a dictionary which will contain items for immutable settings too;
make changes to settings and use them; then restore the original settings by passing the retrieved dictionary to
update().

Parameters

• dicts – a sequence of dicts containing setting keywords and values

• d_settings – additional settings and values

Example

This example illustrates the use-case described above.

First, retrieve settings (here, as an OrderedDict because those are more doctest-friendly, but in “real life” using
as_dict() suffices):

>>> od = f.log_calls_settings.as_OD()
>>> od
OrderedDict([('enabled', True), ('args_sep', ', '),

('log_args', True), ('log_retval', False),
('log_elapsed', False), ('log_exit', True),
('indent', True), ('log_call_numbers', False),
('prefix', ''), ('file', None),
('logger', None), ('loglevel', 10),
('mute', False),
('record_history', False), ('max_history', 0)])

Change settings temporarily:

>>> f.log_calls_settings.update(
... log_args=False, log_elapsed=True, log_call_numbers=True,
... log_retval=True)

Use the new settings for f:

1.12. Dynamic Control of Settings 55



log_calls Documentation, Release 0.3.2

>>> _ = f()
f [4] <== called by <module>

f [4] return value: 91
elapsed time: ... [secs], process time: ... [secs]

f [4] ==> returning to <module>

Now restore original settings, this time passing the retrieved settings dictionary rather than keywords (we could pass
**od, but that’s unnecessary and a pointless expense):

>>> f.log_calls_settings.update(od)
>>> od == f.log_calls_settings.as_OD()
True

1.13 Indirect Values of Keyword Parameters

Most parameters of log_calls (all settings paramaters except prefix and max_history) can take two kinds of
values: direct and indirect, which you can think of as static and dynamic respectively. Direct/static values are actual
values, such as those computed when the definition of a decorated callable is interpreted, e.g. enabled=True,
args_sep=" / ". As discussed in the previous chapter, Dynamic Control of Settings, the values of parameters are
set once and for all when the Python interpreter creates a callable object from the source code of a decorated function
or method. Even if you use a variable as the value of a setting, subsequently changing the variable’s value has no effect
on the decorator’s setting.

log_calls provides yet another way to overcome this limitation, in addition to those described in the previous two
chapters: indirect values.

Caveat

Using this capability is more intrusive than the approaches to dynamically changing settings already discussed:
it introduces more “debug-only” code which you’ll have to ensure doesn’t run in production. As such, it’s less
appealing. However, it has its place, in demos and producing documentation.

1.13.1 Definition and basic examples

log_calls lets you specify any “setting” parameter except prefix or max_history with one level of indirection, by using
indirect values:

indirect value of a setting parameter A string that names a keyword parameter of a decorated callable.
When the callable is called, the value of that keyword argument is used as the value of the setting.

To specify an indirect value for a parameter whose normal values are (or can be) str``s (this applies only
to ``args_sep and logger, at present), append an '=' to the value. For consistency, any indirect value can end
in a trailing '=', which is stripped. Thus, enabled='enable_=' indicates an indirect value to be supplied with
the keyword enable_.

56 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Explicit indirect values

An indirect value can be an explicit keyword argument present in the signature of the callable:

>>> @log_calls(enabled='enable_')
... def f(x, y, enable_=False): pass

Thus, calling f above without passing a value for enable_ uses the default value False of enable_, and the call
gives no output:

>>> f(1, 2)

Supplying a value True for enable_ does give log_calls output:

>>> f(3, 4, enable_=True) # output:
f <== called by <module>

arguments: x=3, y=4, enable_=True
f ==> returning to <module>

Implicit indirect values

An indirect value doesn’t have to be present in the signature of a decorated callable. It can be an implicit keyword
argument that ends up in **kwargs:

>>> @log_calls(args_sep_=', ') # same as log_calls default
... def g(x, y, **kwargs): pass

When the decorated callable is called, the arguments passed by keyword, and the decorated callable’s explicit keyword
parameters with default values, are both searched for the named parameter; if it is found and of the correct type, its
value is used; otherwise a default value is used.

Here, the value of the args_sep setting will be the default value given for args_sep_:

>>> g(1, 2)
g <== called by <module>

arguments: x=1, y=2
g ==> returning to <module>

whereas here, the args_sep value used will be ' $ ':

>>> g(3, 4, args_sep_=' $ ')
g <== called by <module>

arguments: x=3 $ y=4 $ **kwargs={'args_sep_': ' $ '}
g ==> returning to <module>

Note: If an indirect value is specified for enabled and it is “not found”, then the default value of False is used.
For example:

>>> @log_calls(enabled='enable_')
... def h(**kwargs): pass

Here, the indirect value enable_ has no default value — there is no default indirect value for enabled. In this
special case only, the enabled setting will be False if no value is supplied for enable_ in a call to h:

1.13. Indirect Values of Keyword Parameters 57



log_calls Documentation, Release 0.3.2

>>> h() # no output
>>> h(enable_=True) # output:
h <== called by <module>

arguments: **kwargs={'enable_': True}
h ==> returning to <module>

1.13.2 Indirect values in settings dicts and files

In a settings file, the value of a keyword is treated as an indirect value if it’s enclosed in (single or double) quotes and
its last non-quote character is ‘=’. For example:

``file='file_='``

Of course, indirect values can be used in settings dicts as well, and there, only indirect values of args_sep and
logger require a trailing =.

1.13.3 Using log_calls_settings to set indirect values

Similarly, it’s perfectly legitimate to assign an indirect value to a setting via log_calls_settings:

>>> @log_calls(enabled=False)
... def g(*args, **kwargs):
... return sum(args)
>>> g(0, 1, 2) # no log_calls output
3
>>> g.log_calls_settings.enabled = 'enable_log_calls='
>>> g(1, 2, 3, enable_log_calls=True)
g <== called by <module>

arguments: *args=(1, 2, 3), **kwargs={'enable_log_calls': True}
g ==> returning to <module>
6

1.13.4 Controlling format ‘from above’

This indirection mechanism allows a caller to control the appearance of logged calls lower in the call chain, provided
all decorated callables use the same indirect parameter keywords.

In the next example, the separator value supplied to g by keyword argument propagates to f. Note that the arguments
42 and 99 end up in g’s positional varargs tuple.

>>> @log_calls(args_sep='sep=')
... def f(a, b, c, **kwargs): pass
>>> @log_calls(args_sep='sep=')
... def g(a, b, c, *g_args, **g_kwargs):
... f(a, b, c, **g_kwargs)
>>> g(1,2,3, 42, 99, sep='\\n')
g <== called by <module>

arguments:
a=1
b=2
c=3

(continues on next page)

58 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

(continued from previous page)

*g_args=(42, 99)

**g_kwargs={'sep': '\\n'}
f <== called by g

arguments:
a=1
b=2
c=3

**kwargs={'sep': '\\n'}
f ==> returning to g

g ==> returning to <module>

1.13.5 Paradigms for handling keyword parameters

Several uses of “indirect values” described in this section rely on multiple functions and methods treating **kwargs
as a kind of “common area” or “bulletin board” – a central store for data of common interest. This paradigm for
**kwargs handling, which we might call promiscuous cooperation, conflicts with the one usually espoused, for
example in discussions about the design of composable classes which cooperatively call super(). In his article
Python’s super() considered super!, Raymond Hettinger clearly describes that approach as one in which:

every method [f, say, is] cooperatively designed to accept keyword arguments
and a keyword-arguments dictionary, to remove any arguments that it needs,
and to forward the remaining arguments using **kwds [via super().f(..., **kwds),
where ... are positional arguments], eventually leaving the dictionary empty
for the final call in the chain.

Certainly, this condition implies that a subclass’s implementation of a method should never share keywords with a
parent class’s implementation. But it’s more stringent than that. It requires that a class’s implementation of a method
never share keywords with any implementation of that method in any class that might ever be on its mro list. Indeed,
following this prescription, an implementation simply can’t share keyword parameters: each method will “remove any
[parameters] that it needs” before passing the baton via super() to its kinfolk further on down the mro list. In the
presence of multiple inheritance, which alters a class’s static mro, this might be difficult to guarantee.

This is a clear if stern approach to cooperation, one consistent with the behavior of certain “final calls in the chain” that
land in core Python. For example, object.__init__ and type.__init__ raise an exception if they receive
any **kwargs. (Would that they didn’t: this is often a nuisance.) But the “promiscuous” paradigm of cooperation is
also valid and useful, and causes no harm as long as it’s clear what all cooperating parties are agreeing to.

1.14 Accessing Method Wrappers

1.14.1 The get_log_calls_wrapper() and get_own_log_calls_wrapper()
classmethods

log_calls decorates a callable by “wrapping” it in a function (the wrapper) which has attributes containing data about
the callable: log_calls_settings, containing settings, and stats, containing statistics. Access to these at-
tributes requires access to the callable’s wrapper.

1.14. Accessing Method Wrappers 59

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/
https://docs.python.org/3/glossary.html#term-method-resolution-order


log_calls Documentation, Release 0.3.2

It’s straightforward to access the wrapper of a decorated global function f: after decoration, f refers to the wrapper.
For methods and properties, however, the various kinds of methods and the two ways of defining properties require
different navigation paths to the wrapper. log_calls hides this complexity, providing uniform access to the wrappers
of methods and properties.

classmethod decorated_class.get_log_calls_wrapper(fname: str)
Classmethod of a decorated class. Call this on a decorated class or an instance thereof to access the wrapper of
the callable named fname, in order to access the log_calls-added attributes for fname.

Parameters fname – name of a method (instance method, staticmethod or classmethod), or the
name of a property (treated as denoting the getter), or the name of a property concatenated with
‘.getter’, ‘.setter’ or ‘.deleter’.

Note: If a property is defined using the property function, as in

propx = property(getx, setx, delx),

where getx, setx, delx are methods of a class (or None), then each individual property can
be referred to in two ways:

• via the name of the method, eg. setx, or

• via propx.qualifier, where qualifier is one of setter, getter, deleter, as appropri-
ate (so propx.setter also refers to setx)

Thus you can use either dc.log_calls_wrapper('setx') or dc.
log_calls_wrapper('propx.setter') where dc is a decorated class or an
instance thereof.

Raises TypeError if fname is not a str; ValueError if fname isn’t as described above or isn’t
in the __dict__ of decorated_class.

Returns wrapper of fname if fname is decorated, None otherwise.

classmethod decorated_class.get_own_log_calls_wrapper()
Classmethod of a decorated class. Call from within a method or property of a decorated class. Typically called on
self from within instance methods, on cls from within classmethods, and on the explicitly named enclosing,
decorated class decorated_class from within staticmethods.

Raises ValueError if caller is not decorated.

Returns the wrapper of the caller (a function), so that the caller can access its own log_calls at-
tributes.

1.15 Call History and Statistics

Unless it’s bypassed, log_calls always collects at least a few basic statistics about each call to a decorated callable.
It can collect the entire history of calls to a function or method if asked to (using the record_history setting). The
statistics and history are accessible via the stats attribute that log_calls adds to the wrapper of a decorated callable.

The two settings parameters we haven’t yet discussed govern the recording and retention of a decorated callable’s call
history.

60 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.15.1 The record_history parameter (default: False)

When the record_history setting is true for a decorated callable, log_calls accumulates a sequence of records
holding the details of each logged call to the callable:

A logged call to a decorated callable is one that occurs when the callable’s enabled setting is true.

That history is accessible via attributes of the stats object.

Let’s define a function f with record_history set to true:

>>> @log_calls(record_history=True, log_call_numbers=True, log_exit=False)
... def f(a, *args, x=1, **kwargs): pass

In the next few sections, we’ll call this function, manipulate its settings, and examine its statistics and history.

1.15.2 The max_history parameter (default: 0)

The max_history parameter bounds the number of call history records retained in a decorated callable’s recorded
call history. If this value is 0 or negative, unboundedly many records are retained (unless or until you change
the record_history setting to false, or call the stats.clear_history() method). If the value of
max_history is > 0, call history operates as a least-recently-used cache: log_calls will retain at most that many
records, discarding the oldest record to make room for a new ones if the history is at capacity.

You cannot change max_history using the mapping interface or the attribute of the same name; attempts to do so
raise ValueError. The only way to change its value is with the stats.clear_history(max_history=0)
method, discussed below.

1.15.3 The stats attribute and its attributes

The stats attribute of a decorated callable is an object that provides read-only statistics and data about the calls to a
decorated callable:

• stats.num_calls_logged

• stats.num_calls_total

• stats.elapsed_secs_logged

• stats.process_secs_logged

• stats.history

• stats.history_as_csv

• stats.history_as_DataFrame

The first four of these don’t depend on the record_history setting at all. The last three values, stats.
history*, are empty unless record_history is or has been true.

The stats attribute also provides one method, stats.clear_history().

Let’s call the above-defined function f twice:

>>> f(0)
f [1] <== called by <module>

arguments: a=0
defaults: x=1

>>> f(1, 100, 101, x=1000, y=1001)

(continues on next page)

1.15. Call History and Statistics 61



log_calls Documentation, Release 0.3.2

(continued from previous page)

f [2] <== called by <module>
arguments: a=1, *args=(100, 101), x=1000, **kwargs={'y': 1001}

and explore its stats.

The stats.num_calls_logged attribute

The stats.num_calls_logged attribute holds the number of the most recent logged call to a decorated callable.
Thus, f.stats.num_calls_logged will equal 2:

>>> f.stats.num_calls_logged
2

This counter is incremented on each logged call to the callable, even if its log_call_numbers setting is false.

The stats.num_calls_total attribute

The stats.num_calls_total attribute holds the total number of calls to a decorated callable. This counter is
incremented even when logging is disabled for a callable (its enabled setting is False, i.e. 0), but not when it’s
bypassed.

To illustrate, let’s now disable logging for f and call it 3 more times:

>>> f.log_calls_settings.enabled = False
>>> for i in range(3): f(i)

Now f.stats.num_calls_total will equal 5, but f.stats.num_calls_logged will still equal 2:

>>> f.stats.num_calls_total
5
>>> f.stats.num_calls_logged
2

Finally, let’s re-enable logging for f and call it again. The displayed call number will be the number of the logged
call, 3, the same value as f.stats.num_calls_logged after the call:

>>> f.log_calls_settings.enabled = True
>>> f(10, 20, z=5000)
f [3] <== called by <module>

arguments: a=10, *args=(20,), **kwargs={'z': 5000}
defaults: x=1

>>> f.stats.num_calls_total
6
>>> f.stats.num_calls_logged
3

62 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

The stats.elapsed_secs_logged attribute

The stats.elapsed_secs_logged attribute holds the sum of the elapsed times of all logged calls to a decorated
callable, in seconds. Here’s its value for the three logged calls to f above (this doctest is actually +SKIPped):

>>> f.stats.elapsed_secs_logged
6.67572021484375e-06

The stats.process_secs_logged attribute

The stats.process_secs_logged attribute holds the sum of the process times of all logged calls to a decorated
callable, in seconds. Here’s its value for the three logged calls to f above (this doctest is actually +SKIPped):

>>> f.stats.process_secs_logged
1.1000000000038757e-05

The stats.history attribute

The stats.history attribute of a decorated callable provides the call history of logged calls as a tuple of records.
Each record is a namedtuple of type CallRecord, whose fields are those shown in the following example. Here’s
f’s call history, output reformatted for readability:

>>> print('\\n'.join(map(str, f.stats.history)))
CallRecord(call_num=1, argnames=['a'], argvals=(0,), varargs=(),

explicit_kwargs=OrderedDict(),
defaulted_kwargs=OrderedDict([('x', 1)]), implicit_kwargs={},
retval=None,
elapsed_secs=3.0049995984882116e-06,
process_secs=2.9999999999752447e-06,
timestamp='10/28/14 15:56:13.733763',
prefixed_func_name='f', caller_chain=['<module>'])

CallRecord(call_num=2, argnames=['a'], argvals=(1,), varargs=(100, 101),
explicit_kwargs=OrderedDict([('x', 1000)]),
defaulted_kwargs=OrderedDict(), implicit_kwargs={'y': 1001},
retval=None,
elapsed_secs=3.274002665420994e-06,
process_secs=3.0000000000030003e-06,
timestamp='10/28/14 15:56:13.734102',
prefixed_func_name='f', caller_chain=['<module>'])

CallRecord(call_num=3, argnames=['a'], argvals=(10,), varargs=(20,),
explicit_kwargs=OrderedDict(),
defaulted_kwargs=OrderedDict([('x', 1)]), implicit_kwargs={'z

→˓': 5000},
retval=None,
elapsed_secs=2.8769973141606897e-06,
process_secs=2.9999999999752447e-06,
timestamp='10/28/14 15:56:13.734412',
prefixed_func_name='f', caller_chain=['<module>'])

The CSV representation, discussed next, pairs the argnames with their values in argvals (each parameter name
in argnames become a column heading), making it more human-readable, especially when viewed in a program that
presents CSVs nicely.

1.15. Call History and Statistics 63



log_calls Documentation, Release 0.3.2

The stats.history_as_csv attribute

The value stats.history_as_csv attribute is a text representation in CSV format of a decorated callable’s call
history. You can save this string and import it into the program or tool of your choice for further analysis. (If your tool
of choice is Pandas, you can use The stats.history_as_DataFrame attribute, discussed next, to obtain history directly
in the representation you really want.)

The CSV representation breaks out each argument into its own column, throwing away information about whether an
argument’s value was explicitly passed or is a default.

The CSV separator is '|' rather than ',' because some of the fields – args, kwargs and caller_chain – use
commas intrinsically. Let’s examine history_as_csv for a function that has all of those fields nontrivially:

>>> @log_calls(record_history=True, log_call_numbers=True,
... log_exit=False, log_args=False)
... def f(a, *extra_args, x=1, **kw_args): pass
>>> def g(a, *args, **kwargs):
... f(a, *args, **kwargs)
>>> @log_calls(log_exit=False, log_args=False)
... def h(a, *args, **kwargs):
... g(a, *args, **kwargs)
>>> h(0)
h <== called by <module>

f [1] <== called by g <== h
>>> h(10, 17, 19, z=100)
h <== called by <module>

f [2] <== called by g <== h
>>> h(20, 3, 4, 6, x=5, y='Yarborough', z=100)
h <== called by <module>

f [3] <== called by g <== h

Here’s the call history of f in CSV format (ellipses added for the elapsed_secs, process_secs and
timestamp fields):

>>> print(f.stats.history_as_csv)
call_num|a|extra_args|x|kw_args|retval|elapsed_secs|process_secs|timestamp|prefixed_
→˓fname|caller_chain
1|0|()|1|{}|None|...|...|...|'f'|['g', 'h']
2|10|(17, 19)|1|{'z': 100}|None|...|...|...|'f'|['g', 'h']
3|20|(3, 4, 6)|5|{'y': 'Yarborough', 'z': 100}|None|...|...|...|'f'|['g', 'h']

In tabular form,

64 Chapter 1. Table of Contents

http://pandas.pydata.org


log_calls Documentation, Release 0.3.2

call_num a extra_argsx kw_args retval elapsed_secsprocess_secstimestampprefixed_fnamecaller_chain
1 0 () 1

{}

None . . . . . . . . . ‘f’ [‘g’,
‘h’]

2 10 (17,
19)

1

{‘z’:
100}

None . . . . . . . . . ‘f’ [‘g’,
‘h’]

3 20 (3, 4,
6)

5

{‘y’:
‘Yarbor-
ough’,

‘z’:
100}

None . . . . . . . . . ‘f’ [‘g’,
‘h’]

As usual, log_calls will use whatever names you use for varargs parameters (here, extra_args and kw_args).
Whatever the name of the kwargs parameter, items within that field are guaranteed to be in sorted order.

The stats.history_as_DataFrame attribute

The stats.history_as_DataFrame attribute returns the history of a decorated callable as a Pandas DataFrame,
if the Pandas library is installed. This saves you the intermediate step of calling DataFrame.from_csv with the
proper arguments (and also saves you from having to know or care what those are).

If Pandas is not installed, the value of this attribute is None.

The stats.clear_history(max_history=0) method

As you might expect, the stats.clear_history(max_history=0) method clears the call history of a deco-
rated callable. In addition, it resets all running sums:

• num_calls_total and num_calls_logged are reset to 0,

• elapsed_secs_logged and process_secs_logged are reset to 0.0.

This method is the only way to change the value of the ``max_history`` setting, via the optional keyword parameter
for which you can supply any (integer) value, by default 0.

The function f has a nonempty history, as we just saw. Let’s clear f’s history, setting max_history to 33:

>>> f.stats.clear_history(max_history=33)

and check that settings and `stats` tallies are reset:

>>> f.log_calls_settings.max_history
33
>>> f.stats.num_calls_logged
0
>>> f.stats.num_calls_total
0

(continues on next page)

1.15. Call History and Statistics 65

http://pandas.pydata.org
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe


log_calls Documentation, Release 0.3.2

(continued from previous page)

>>> f.stats.elapsed_secs_logged
0.0
>>> f.stats.process_secs_logged
0.0

1.16 Call Chains

log_calls does its best to chase back along the call chain to find the first enabled log_calls-decorated callable on the
stack. If there’s no such function, it just displays the immediate caller. If there is such a function, however, it displays
the entire list of functions on the stack up to and including that function when reporting calls and returns. Without
this, you’d have to guess at what was called in between calls to functions decorated by log_calls. If you specified a
prefix or name for the decorated caller on the end of a call chain, log_calls will use the requested display name:

1.16.1 Basic examples

>>> @log_calls()
... def g1():
... pass
>>> def g2():
... g1()
>>> @log_calls(prefix='mid.')
... def g3():
... g2()
>>> def g4():
... g3()
>>> @log_calls()
... def g5():
... g4()
>>> g5()
g5 <== called by <module>

mid.g3 <== called by g4 <== g5
g1 <== called by g2 <== mid.g3
g1 ==> returning to g2 ==> mid.g3

mid.g3 ==> returning to g4 ==> g5
g5 ==> returning to <module>

In the next example, g is log_calls-decorated but logging is disabled, so the reported call chain for f stops at its
immediate caller:

>>> @log_calls()
... def f(): pass
>>> def not_decorated(): f()
>>> @log_calls(enabled=False)
... def g(): not_decorated()
>>> g()
f <== called by not_decorated
f ==> returning to not_decorated

Elaborating on the previous example, here are longer call chains with an intermediate decorated function that has
logging disabled:

66 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

>>> @log_calls()
... def e(): pass
>>> def not_decorated_call_e(): e()
>>> @log_calls()
... def f(): not_decorated_call_e()
>>> def not_decorated_call_f(): f()
>>> @log_calls(enabled=False)
... def g(): not_decorated_call_f()
>>> @log_calls()
... def h(): g()
>>> h()
h <== called by <module>

f <== called by not_decorated_call_f <== g <== h
e <== called by not_decorated_call_e <== f
e ==> returning to not_decorated_call_e ==> f

f ==> returning to not_decorated_call_f ==> g ==> h
h ==> returning to <module>

log_calls chases back to the nearest enabled decorated callable, so that there aren’t gaps between call chains.

1.16.2 Call chains and inner functions

When chasing back along the stack, log_calls also detects inner functions that it has decorated:

>>> @log_calls()
... def h0(z):
... pass
>>> def h1(x):
... @log_calls(name='h1_inner')
... def h1_inner(y):
... h0(x*y)
... return h1_inner
>>> def h2():
... h1(2)(3)
>>> def h3():
... h2()
>>> def h4():
... @log_calls(name='h4_inner')
... def h4_inner():
... h3()
... return h4_inner
>>> @log_calls()
... def h5():
... h4()()
>>> h5()
h5 <== called by <module>

h4_inner <== called by h5
h1_inner <== called by h2 <== h3 <== h4_inner

arguments: y=3
h0 <== called by h1_inner

arguments: z=6
h0 ==> returning to h1_inner

h1_inner ==> returning to h2 ==> h3 ==> h4_inner
h4_inner ==> returning to h5

h5 ==> returning to <module>

. . . even when the inner function is called from within the outer function it’s defined in:

1.16. Call Chains 67



log_calls Documentation, Release 0.3.2

>>> @log_calls()
... def j0():
... pass
>>> def j1():
... j0()
>>> def j2():
... @log_calls()
... def j2_inner():
... j1()
... j2_inner()
>>> @log_calls()
... def j3():
... j2()
>>> j3()
j3 <== called by <module>

j2.<locals>.j2_inner <== called by j2 <== j3
j0 <== called by j1 <== j2.<locals>.j2_inner
j0 ==> returning to j1 ==> j2.<locals>.j2_inner

j2.<locals>.j2_inner ==> returning to j2 ==> j3
j3 ==> returning to <module>

1.16.3 Call chains and log_call_numbers

If a decorated callable is enabled and has log_call_numbers set to true, then its call numbers will be displayed
in call chains:

>>> @log_calls()
... def f(): pass
>>> def not_decorated(): f()
>>> @log_calls(log_call_numbers=True)
... def g(): not_decorated()
>>> g()
g [1] <== called by <module>

f <== called by not_decorated <== g [1]
f ==> returning to not_decorated ==> g [1]

g [1] ==> returning to <module>

Also apropos is the example Indentation and call numbers with recursion.

68 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.17 Further Examples and Use Cases

This chapter collects several longer examples that demonstrate techniques and not just individual features of log_calls.

1.17.1 Using enabled as a level of verbosity

Sometimes it’s desirable for a function to print or log debugging messages as it executes. It’s the oldest form of
debugging! The enabled parameter is in fact an int, not just a bool. Instead of giving it a simple bool value,
you can use a nonnegative int and treat it as a verbosity level:

>>> DEBUG_MSG_BASIC = 1
>>> DEBUG_MSG_VERBOSE = 2
>>> DEBUG_MSG_MOREVERBOSE = 3 # etc.
>>> @log_calls(enabled='debuglevel')
... def do_stuff_with_commentary(*args, debuglevel=0):
... if debuglevel >= DEBUG_MSG_VERBOSE:
... print("*** extra debugging info ***")

No output:

>>> do_stuff_with_commentary()

Only log_calls output:

>>> do_stuff_with_commentary(debuglevel=DEBUG_MSG_BASIC)
do_stuff_with_commentary <== called by <module>

arguments: debuglevel=1
do_stuff_with_commentary ==> returning to <module>

log_calls output plus the function’s debugging reportage:

>>> do_stuff_with_commentary(debuglevel=DEBUG_MSG_VERBOSE)
do_stuff_with_commentary <== called by <module>

arguments: debuglevel=2

*** extra debugging info ***
do_stuff_with_commentary ==> returning to <module>

The metaclass example later in this chapter also uses this technique, and writes its messages with the log_calls.print()
method.

1.17.2 Indentation and call numbers with recursion

Setting log_call_numbers to true is especially useful in with recursive, mutually recursive and reentrant callables.
In this example, the function depth computes the depth of a dictionary (a non-dict has depth = 0, and a dict has depth
= 1 + the max of the depths of its values):

>>> from collections import OrderedDict
>>> @log_calls(log_call_numbers=True, log_retval=True)
>>> def depth(d, key=None):
... """Middle line (elif) is needed only because
... max(empty_sequence) raises ValueError
... (whereas returning 0 would be sensible and even expected)
... """
... if not isinstance(d, dict): return 0 # base case

(continues on next page)

1.17. Further Examples and Use Cases 69



log_calls Documentation, Release 0.3.2

(continued from previous page)

... elif not d: return 1

... else: return max(map(depth, d.values(), d.keys())) + 1

Now we call depth with a nested OrderedDict:

>>> depth(
... OrderedDict(
... (('a', 0),
... ('b', OrderedDict( (('c1', 10), ('c2', 11)) )),
... ('c', 'text'))
... )
... )
depth [1] <== called by <module>

arguments: d=OrderedDict([('a', 0), ('b', OrderedDict([('c1', 10), ('c2', 11)])),
→˓('c', 'text')])

defaults: key=None
depth [2] <== called by depth [1]

arguments: d=0, key='a'
depth [2] return value: 0

depth [2] ==> returning to depth [1]
depth [3] <== called by depth [1]

arguments: d=OrderedDict([('c1', 10), ('c2', 11)]), key='b'
depth [4] <== called by depth [3]

arguments: d=10, key='c1'
depth [4] return value: 0

depth [4] ==> returning to depth [3]
depth [5] <== called by depth [3]

arguments: d=11, key='c2'
depth [5] return value: 0

depth [5] ==> returning to depth [3]
depth [3] return value: 1

depth [3] ==> returning to depth [1]
depth [6] <== called by depth [1]

arguments: d='text', key='c'
depth [6] return value: 0

depth [6] ==> returning to depth [1]
depth [1] return value: 2

depth [1] ==> returning to <module>
2

The three calls depth [2], depth [3], and depth [6] handle the three items of the dictionary passed to
depth [1]; they return 0, 1, and 0 respectively. Finally depth [1] returns 1 plus the max of those values.

Note: The optional key parameter is for instructional purposes, so you can see the key that’s paired with the value of
d in the caller’s dictionary. Typically the signature of this function would be just def depth(d), and the recursive
case would return 1 + max(map(depth, d.values())).

70 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.17.3 Using a logger with multiple handlers that have different loglevels

First let’s set up a logger with a console handler that writes to stdout:

>>> import logging
>>> import sys
>>> ch = logging.StreamHandler(stream=sys.stdout)
>>> c_formatter = logging.Formatter('%(levelname)s:%(name)s:%(message)s')
>>> ch.setFormatter(c_formatter)
>>> logger = logging.getLogger('mylogger')
>>> logger.addHandler(ch)
>>> logger.setLevel(logging.DEBUG)

Now let’s add another handler, also sent to stdout for the sake of the example but best thought of as writing to a log
file. We’ll set up the existing console handler with level INFO, and the “file” handler with level DEBUG – a typical
setup: you want to log all details to the file, but you only want to write more important messages to the console.

>>> fh = logging.StreamHandler(stream=sys.stdout)
>>> f_formatter = logging.Formatter('[FILE] %(levelname)8s:%(name)s: %(message)s')
>>> fh.setFormatter(f_formatter)
>>> fh.setLevel(logging.DEBUG)
>>> logger.addHandler(fh)
>>> ch.setLevel(logging.INFO)

Suppose we have two functions: one that’s lower-level/often-called, and another that’s higher-level/infrequently called.
It’s appropriate to give the infrequently called function a higher loglevel:

>>> @log_calls(logger=logger, loglevel=logging.DEBUG)
... def popular(): pass
>>> @log_calls(logger=logger, loglevel=logging.INFO)
... def infrequent(): popular()

Set the log level to logging.DEBUG – the console handler logs calls only for infrequent, but the “file” handler
logs calls for both functions:

>>> logger.setLevel(logging.DEBUG)
>>> infrequent()
INFO:mylogger:infrequent <== called by <module>
[FILE] INFO:mylogger: infrequent <== called by <module>
[FILE] DEBUG:mylogger: popular <== called by infrequent
[FILE] DEBUG:mylogger: popular ==> returning to infrequent
INFO:mylogger:infrequent ==> returning to <module>
[FILE] INFO:mylogger: infrequent ==> returning to <module>

Now set log level to logging.INFO – both handlers logs calls only for infrequent:

>>> logger.setLevel(logging.INFO)
>>> infrequent()
INFO:mylogger:infrequent <== called by <module>
[FILE] INFO:mylogger: infrequent <== called by <module>
INFO:mylogger:infrequent ==> returning to <module>
[FILE] INFO:mylogger: infrequent ==> returning to <module>

1.17. Further Examples and Use Cases 71



log_calls Documentation, Release 0.3.2

1.17.4 A metaclass example

This example demonstrates a few techniques:

• writing debug messages with log_calls.print(), which handles global indentation for you;

• use of enabled as an integer level of verbosity.

The following class A_meta will serve as the metaclass for classes defined subsequently:

>>> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
>>> # A_meta, a metaclass
>>> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
>>> from collections import OrderedDict
>>> separator = '\n' # default ', ' gives rather long lines

>>> A_DBG_NONE = 0
>>> A_DBG_BASIC = 1
>>> A_DBG_INTERNAL = 2

>>> @log_calls(args_sep=separator, enabled='A_debug=')
... class A_meta(type):
... @classmethod
... @log_calls(log_retval=True)
... def __prepare__(mcs, cls_name, bases, **kwargs):
... super_dict = super().__prepare__(cls_name, bases, **kwargs)
... A_debug = kwargs.pop('A_debug', A_DBG_NONE)
... if A_debug >= A_DBG_INTERNAL:
... log_calls.print(" mro =", mcs.__mro__)
... log_calls.print(" dict from super() = %r" % super_dict)
... super_dict = OrderedDict(super_dict)
... super_dict['key-from-__prepare__'] = 1729
... return super_dict
...
... def __new__(mcs, cls_name, bases, cls_members: dict, **kwargs):
... cls_members['key-from-__new__'] = "No, Hardy!"
... A_debug = kwargs.pop('A_debug', A_DBG_NONE)
... if A_debug >= A_DBG_INTERNAL:
... log_calls.print(" calling super() with cls_members =", cls_members)
... return super().__new__(mcs, cls_name, bases, cls_members, **kwargs)
...
... def __init__(cls, cls_name, bases, cls_members: dict, **kwargs):
... A_debug = kwargs.pop('A_debug', A_DBG_NONE)
... if A_debug >= A_DBG_INTERNAL:
... log_calls.print(" cls.__mro__:", cls.__mro__)
... log_calls.print(" type(cls).__mro__[1] =", type(cls).__mro__[1])
... try:
... super().__init__(cls_name, bases, cls_members, **kwargs)
... except TypeError as e:
... # call type.__init__
... if A_debug >= A_DBG_INTERNAL:
... log_calls.print(" calling type.__init__ with no kwargs")
... type.__init__(cls, cls_name, bases, cls_members)

The class A_meta is a metaclass: it derives from type, and defines (overrides) methods __prepare__, __new__
and __init__. All of these log_calls-decorated methods awrite their messages using the indent-aware method
log_calls.print().

All of A_meta’s methods look for an implicit keyword parameter A_debug, used as the indirect value of the log_calls

72 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

parameter enabled. The methods treat its value as an integer verbosity level: they write extra messages when the
value of A_debug is at least A_DBG_INTERNAL.

Rather than make A_debug an explicit keyword parameter of the metaclass methods, as in:

def __prepare__(mcs, cls_name, bases, *, A_debug=0, **kwargs):

instead we have left their signatures agnostic. If A_debug is passed by a class definition (as below), the methods use
the passed value, and remove A_debug from kwargs; otherwise they use a default value A_DBG_NONE, which is
less than their threshold value for writing debug messages.

When we include A_debug=A_DBG_INTERNAL as a keyword argument to a class that uses A_meta as its meta-
class, that argument gets passed to all of A_meta’s methods, so not only will calls to the metaclass methods be logged,
but those methods will also print extra debugging information:

>>> class A(metaclass=A_meta, A_debug=A_DBG_INTERNAL):
... pass
A_meta.__prepare__ <== called by <module>

arguments:
mcs=<class '__main__.A_meta'>
cls_name='A'
bases=()

**kwargs={'A_debug': 2}
mro = (<class '__main__.A_meta'>, <class 'type'>, <class 'object'>)
dict from super() = {}

A_meta.__prepare__ return value: OrderedDict([('key-from-__prepare__', 1729)])
A_meta.__prepare__ ==> returning to <module>
A_meta.__new__ <== called by <module>

arguments:
mcs=<class '__main__.A_meta'>
cls_name='A'
bases=()
cls_members=OrderedDict([('key-from-__prepare__', 1729),

('__module__', '__main__'),
('__qualname__', 'A')])

**kwargs={'A_debug': 2}
calling super() with cls_members = OrderedDict([('key-from-__prepare__',

→˓1729),
('__module__', '__main__'),
('__qualname__', 'A'),
('key-from-__new__', 'No,

→˓Hardy!')])
A_meta.__new__ ==> returning to <module>
A_meta.__init__ <== called by <module>

arguments:
cls=<class '__main__.A'>
cls_name='A'
bases=()
cls_members=OrderedDict([('key-from-__prepare__', 1729),

('__module__', '__main__'),
('__qualname__', 'A'),
('key-from-__new__', 'No, Hardy!')])

**kwargs={'A_debug': 2}
cls.__mro__: (<class '__main__.A'>, <class 'object'>)
type(cls).__mro__[1] = <class 'type'>

A_meta.__init__ ==> returning to <module>

If we had passed A_debug=A_DBG_BASIC, then only log_calls output would have been printed: the metaclass
methods would not have printed their extra debugging statements.

1.17. Further Examples and Use Cases 73



log_calls Documentation, Release 0.3.2

If we pass A_debug=0 (or omit the parameter), we get no printed output at all, either from log_calls or from
A_meta’s methods:

>>> class AA(metaclass=A_meta, A_debug=False): # no output
... pass

>>> class AAA(metaclass=A_meta): # no output
... pass

Note: This example is from the docstring of the function main__metaclass_example() in tests/
test_log_calls.py. In that module, we perform a fixup to the docstring which changes '__main__' to
__name__, so that the test works no matter how it’s invoked.

1.18 The record_history Decorator

The record_history decorator is a stripped-down version of log_calls which records calls to a decorated callable but
writes no messages. You can think of it as log_calls with the record_history and log_call_numbers settings
always true, with mute always true (equal, that is, to log_calls.MUTE.CALLS), and without any of the automatic
message-logging apparatus.

record_history shares a great deal of functionality with log_calls. This chapter will note differences where they exist,
and point to the corresponding documentation for log_calls features.

1.18.1 Usage

Import record_history just as you would log_calls:

>>> from log_calls import record_history

We’ll use the following function in our examples throughout this chapter:

>>> @record_history()
... def record_me(a, b, x):
... return a * x + b

1.18.2 Keyword parameters

record_history has only the following keyword parameters:

• enabled

• prefix

• max_history

• omit

• only

• NO_DECO

• settings

74 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Of these, only three are “settings” — data that record_history maintains about the state of a decorated callable:

Keyword parameter Default value

Description

enabled True

When true, call history will be
recorded

prefix ''

A str to prefix the function name
with
in call records

max_history 0

An int. If the value is > 0,
store at most value-many records,
with oldest records overwritten;
if the value is 0, store unboundedly
many records.

Setting enabled to true in record_history is like setting both enabled and record_history to true in log_calls (granting
the analogy above about mute). You can supply an indirect value for the enabled parameter, as for log_calls.

The enabled and prefix settings are mutable; max_history can only be changed with the stats.
clear_history(max_history=0) method of a decorated callable.

Use NO_DECO for production

Like log_calls, the record_history decorator imposes some runtime overhead. As for log_calls, you can use the
NO_DECO parameter in a settings file or settings dict so that you can easily toggle decoration, as explained in Use
NO_DECO=True for production.

1.18.3 “Settings”, and the record_history_settings attribute

Just as the settings of log_calls for a decorated callable are accessible dynamically through
the log_calls_settings attribute, the settings of record_history are exposed via a
record_history_settings attribute.

record_history_settings is an object of the same type as log_calls_settings, so it has the same
methods and behaviors described in the log_calls_settings section.

As mentioned above, record_history has just a few “settings”:

>>> len(record_me.record_history_settings)
3
>>> record_me.record_history_settings.as_OD()
OrderedDict([('enabled', True), ('prefix', ''), ('max_history', 0)])

1.18. The record_history Decorator 75



log_calls Documentation, Release 0.3.2

1.18.4 The stats attribute and its attributes

Callables decorated by record_history have a full-featured stats attribute, as described in The stats attribute and its
attributes. In the record_history examples section below, we’ll illustrate its use with the record_me function.

1.18.5 The .print() and .print_exprs() methods

Callables decorated with record_history can use the methods record_history.print() and
record_history.print_exprs() to write debug messages. Of course, you won’t want to do so in a
tight loop whose performance you’re profiling, but the methods are available. Output is always via the global
print function, as record_history doesn’t write to loggers or files. record_history also has the global flag
record_history.print_methods_raise_if_no_deco, completely analogous to that of log_calls. See
the chapter Writing log_calls-Aware Debugging Messages for details about these methods and the global flag.

1.18.6 The get_record_history_wrapper() and get_own_record_history_wrapper()
methods

These classmethods are completely analogous to the get_log_calls_wrapper() and
get_own_log_calls_wrapper() classmethods, described in the section on accessing wrappers of meth-
ods. They return the wrapper of a method or property decorated by record_history, to allow access to its attributes.

1.18.7 The record_history.decorate_* classmethods

The record_history.decorate_* classmethods exist, and behave like their log_calls counterparts docu-
mented in Bulk (Re)Decoration, (Re)Decorating Imports.

1.18.8 record_history examples

Let’s finally call the function defined above:

>>> for x in range(15):
... _ = record_me(3, 5, x) # "_ = " for doctest

>>> len(record_me.stats.history)
15

Some tallies (your mileage may vary for elapsed_secs_logged):

>>> record_me.stats.num_calls_logged
15
>>> record_me.stats.num_calls_total
15
>>> record_me.stats.elapsed_secs_logged
2.2172927856445312e-05

Call history in CSV format, with ellipses for ‘elapsed_secs’, ‘process_secs’ and ‘timestamp’ columns:

76 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

>>> print(record_me.stats.history_as_csv)
call_num|a|b|x|retval|elapsed_secs|process_secs|timestamp|prefixed_fname|caller_chain
1|3|5|0|5|...|...|...|'record_me'|['<module>']
2|3|5|1|8|...|...|...|'record_me'|['<module>']
3|3|5|2|11|...|...|...|'record_me'|['<module>']
4|3|5|3|14|...|...|...|'record_me'|['<module>']
5|3|5|4|17|...|...|...|'record_me'|['<module>']
6|3|5|5|20|...|...|...|'record_me'|['<module>']
7|3|5|6|23|...|...|...|'record_me'|['<module>']
8|3|5|7|26|...|...|...|'record_me'|['<module>']
9|3|5|8|29|...|...|...|'record_me'|['<module>']
10|3|5|9|32|...|...|...|'record_me'|['<module>']
11|3|5|10|35|...|...|...|'record_me'|['<module>']
12|3|5|11|38|...|...|...|'record_me'|['<module>']
13|3|5|12|41|...|...|...|'record_me'|['<module>']
14|3|5|13|44|...|...|...|'record_me'|['<module>']
15|3|5|14|47|...|...|...|'record_me'|['<module>']

Disable recording, and call the function one more time:

>>> record_me.record_history_settings.enabled = False
>>> _ = record_me(583, 298, 1000)

The call numbers of the last 2 calls to record_me remain 14 and 15:

>>> list(map(lambda rec: rec.call_num, record_me.stats.history[-2:]))
[14, 15]

Here are the call counters:

>>> record_me.stats.num_calls_logged
15
>>> record_me.stats.num_calls_total
16

Re-enable recording and call the function again, once:

>>> record_me.record_history_settings.enabled = True
>>> _ = record_me(1900, 2000, 20)

Here are the last 3 lines of the CSV call history:

>>> lines = record_me.stats.history_as_csv.strip().split('\\n')
>>> # Have to skip next test in .md
>>> # because doctest doesn't split it at all: len(lines) == 1
>>> for line in lines[-3:]:
... print(line)
14|3|5|13|44|...|...|...|'record_me'|['<module>']
15|3|5|14|47|...|...|...|'record_me'|['<module>']
16|1900|2000|20|40000|...|...|...|'record_me'|['<module>']

and here are the updated call counters:

>>> record_me.stats.num_calls_logged
16
>>> record_me.stats.num_calls_total
17

1.18. The record_history Decorator 77



log_calls Documentation, Release 0.3.2

Finally, let’s call stats.clear_history(), setting max_history to 3, call record_me 15 times, and exam-
ine the call history again:

>>> record_me.stats.clear_history(max_history=3)
>>> for x in range(15):
... _ = record_me(3, 5, x)
>>> print(record_me.stats.history_as_csv)
call_num|a|b|x|retval|elapsed_secs|process_secs|timestamp|prefixed_fname|caller_chain
13|3|5|12|41|...|...|...|'record_me'|['<module>']
14|3|5|13|44|...|...|...|'record_me'|['<module>']
15|3|5|14|47|...|...|...|'record_me'|['<module>']

1.19 Appendix I: Keyword Parameters Reference

The log_calls decorator has several keyword parameters, all with hopefully sensible defaults.

78 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.19. Appendix I: Keyword Parameters Reference 79



log_calls Documentation, Release 0.3.2

1.19.1 Keyword parameters for “settings”

Keyword parameter Default value

Description

enabled 1 (True)

An int. If positive (or True),
then log_calls
will output (or “log”) messages. If
false (“disabled”:
0, alias False), log_calls won’t
output messages
or record history but will continue
to increment the
stats.num_calls_total call
counter. If negative
(“bypassed”), log_calls won’t do
anything.

args_sep ', '

str used to separate arguments.
The default lists
all args on the same line. If
args_sep is (or ends
in) '\n', then additional spaces
are appended to
the separator for a neater display.
Other separators
in which '\n' occurs are left
unchanged, and are
untested – experiment/use at your
own risk.

log_args True

If true, arguments passed to the
decorated callable,
and default values used, will be
logged.

log_retval False

If true, log what the decorated
callable returns.
At most 77 chars are printed, with a
trailing ellipsis
if the value is truncated.

log_exit True

If true, the decorator will log an
exiting message
after the decorated callable returns,
and before
returning what the callable
returned. The message
is of the form

f returning to ==>
caller

log_call_numbers False

If true, display the (1-based)
number of the call,
e.g.

f [3] called by <==
<module>

and
f [3] returning to
==> <module>

for the 3rd logged call. These
would correspond to
the 3rd record in the callable’s call
history,
if record_history is true.

log_elapsed False

If true, display how long the
callable took to execute,
in seconds — both elapsed time and
process time.

indent False

When true, each new level of
logged messages is
indented by 4 spaces, giving a
visualization
of the call hierarchy.

prefix ''

A str with which to prefix the
callable’s name
in logged messages: on entry, in
reporting return
values (if log_retval is true)
and on exit (if
log_exit is true).

file sys.stdout

If logger is None, a stream (an
instance of type
io.TextIOBase) to which
log_calls will print its
messages. This value is supplied to
the file
keyword parameter of the print
function.

mute 0 (False)

Three-valued int that controls
amount of output:

log_calls.MUTE.
NOTHING (0) — mute
nothing
log_calls.MUTE.
CALLS (1)
—

mutes log_calls own
output, but allows
output of
log_calls.print
and .print_exprs

log_calls.MUTE.ALL
(2) — mute all output

logger None

If not None, either a logger (a
logging.Logger

instance), or the name of a logger (a
str that will
be passed to
logging.getLogger()); that
logger
will be used to write messages,
provided it has
handlers; otherwise, print is
used.

loglevel logging.DEBUG

Logging level, ignored unless a
logger is specified.
This should be one of the logging
levels defined by
the logging module, or a custom
level.

record_history False

If true, a list of records will be kept,
one for each
logged call to the decorated
callable. Each record
holds: call number (1-based),
arguments, defaulted
keyword arguments, return value,
time elapsed,
time of call, prefixed name, caller
(call chain).
The value of this attribute is a
namedtuple.

max_history 0

An int.
If value > 0, store at most
value-many records,
records, oldest records overwritten;
if value 0, store unboundedly many
records.
Ignored unless
record_history is true.
This setting can be changed only by
calling

wrapper.stats.
clear_history(max_history=0)

(q.v.) on the wrapper of a decorated
callable.

80 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

Of these, only prefix and max_history cannot be indirect, and only max_history is immutable.

1.19. Appendix I: Keyword Parameters Reference 81



log_calls Documentation, Release 0.3.2

82 Chapter 1. Table of Contents



log_calls Documentation, Release 0.3.2

1.19.2 Other keyword parameters (non-“settings”)

Keyword parameter Default value Description
settings None

A dict mapping settings keywords
and/or NO_DECO
to values — a settings dict — or a
string giving
the pathname to a settings file
containing settings
and values. If the pathname is a
directory and not a file,
log_calls looks for a file
.log_calls in that directory;
otherwise, it looks for the named
file.
The format of a settings file is: zero
or more lines of the
form setting = value; lines whose
first non-whitespace
character is '#' are comments.
These settings are
a baseline; other settings passed to
log_calls can
override their values.

name ''

Specifies the display name of a
decorated callable, if
nonempty, and then, it must be a
str, of the form:
* the preferred name of the callable
(a string literal), or
* an old-style format string with
one occurrence of %s,

which the __name__ of the
decorated callable replaces.

omit tuple()

A string or sequence of strings
designating callables of
a class. Supplied to a class
decorator, ignored in function
decorations. The designated
callables will not be decorated.
Each of these “designators” can be
a name of a method
or property, a name of a property
with an appended
qualifier .getter, .setter, or
.deleter; it can
have prefixed class names
(Outer.Inner.mymethod).
It can also contain “glob” wildcards
*?, character sets
[aqrstUWz_], character ranges
[r-t], combinations
of these [a2-9f-hX], and
complements [!acr-t].
Allowed formats:
'f', 'f g h', 'f, g, h',
[f, g, h], (f, g, h)

only tuple()

A string or sequence of strings
designating callables of
a class. Supplied to a class
decorator, ignored in function
decorations. Only the designated
callables will be
decorated, excluding any specified
by omit. These
“designators” are as described for
omit. Allowed formats
of sequences of designators are also
as described for omit.

override False

log_calls respects explicitly given
settings of already-
decorated callables and classes.
Classes are decorated
from the inside out, so explicitly
given settings of any
inner decorators are unchanged by
an outer class decorator.
To give the settings of the outer
decorator priority,
supply it with override=True.
override can be used with the
log_calls.decorate_*
classmethods, in order to change
existing settings
of decorated callables or classes.

NO_DECO False

When true, prevents log_calls from
decorating a callable
or class. Intended for use at
program startup, it provides
a single “true bypass” switch when
placed in a global
settings dict or settings file.

1.19. Appendix I: Keyword Parameters Reference 83



log_calls Documentation, Release 0.3.2

1.20 Appendix II: What Has Been New

This document collects the full What’s New sections of all earlier log_calls releases.

• 0.2.5.post3

– Later binding for prefix, though it’s still not dynamically changeable.

• 0.2.5.post1 & 0.2.5.post2

– Silly fixups (release-bungling)

• 0.2.5

Performance timing/profiling enhancements & additions

– Both elapsed time and process time are both reported now. Python 3.3+ enhances the time module (see
PEP 418), and we take advantage of the new functions perf_counter and process_time.

* Use time.perf_counter, time.process_time (Python 3.3+).

* Added stats.process_secs_logged attribute.

* Added process_secs column to call history (new field for CallRecords).

* log_elapsed reports both elapsed and process times.

– Optimized the decorator wrapper, ~15% speedup

(still trivial with ~big data, see the IPython notebook history_to_pandas-and-profiling).

– Added a “true bypass” feature: when enabled < 0, adjourn to the decorated function immedately, with
no further processing. Again, not a speed speed demon – see the IPython notebook referenced above.

– Deprecation warning issued if settings_path parameter used.

(You’ll see this only if you run the Python interpreter with the -W <action> option, where <action>
is any valid action string other than ignore, e.g. default.)

– Updated tests and docs to reflect these changes.

• 0.2.4.post4

– (docs & description changes only, no code changes)

• 0.2.4.post3

– (never existed)

• 0.2.4.post2

– The settings parameter (formerly settings_path) lets you specify default values for multiple set-
tings, either as a dictionary or as a file. The settings_path parameter is deprecated, as settings is
a superset. See the documentation http://www.pythonhosted.org/log_calls#settings-parameter for details,
discussion and examples.

• 0.2.4.post1

– settings_path feature: allow file=sys.stderr in settings files, under IPython too; neater inter-
nals of settings file parsing.

• 0.2.4

– The new settings_path parameter lets you specify a file containing default values for multiple set-
tings. See the documentation http://www.pythonhosted.org/log_calls#settings-parameter for details, dis-
cussion and examples.

84 Chapter 1. Table of Contents

https://www.python.org/dev/peps/pep-0418
https://docs.python.org/3/library/time.html?highlight=time#time.perf_counter
https://docs.python.org/3/library/time.html?highlight=time#time.process_time
http://www.pythonhosted.org/log_calls/history_to_pandas-and-profiling.html
https://docs.python.org/3/using/cmdline.html#cmdoption-W
http://www.pythonhosted.org/log_calls#settings-parameter
http://www.pythonhosted.org/log_calls#settings-parameter


log_calls Documentation, Release 0.3.2

– You can now use a logger name (something you’d pass to logging.getLogger()) as the value of the
logger setting.

– The indent setting now works with loggers too. See examples:

* using log_message as a general output method that works as expected, whatever the destination –
stdout, another stream, a file, or a logger [in tests/test_log_calls_more.py, docstring
of main__log_message__all_possible_output_destinations()];

* setting up a logger with a minimal formatter that looks just like the out-
put of print [in tests/test_log_calls_more.py, docstring of
main__logging_with_indent__minimal_formatters()].

– Added the decorator used_unused_keywords to support the settings_path feature, and made
it visible (you can import it from the package) because it’s more broadly useful. This decorator lets a
function obtain, on a per-call basis, two dictionaries of its explicit keyword arguments and their values:
those which were actually passed by the caller, and those which were not and received default values. For
examples, see the docstring of main() in used_unused_kwds.py.

– When displaying returned values (log_retval setting is true), the maximum displayed length of values
is now 77, up from 60, not counting trailing ellipsis.

– The deprecated indent_extra parameter to log_message is gone.

– Little bug fixes, improvements.

• 0.2.3 and 0.2.3.post N

– A better signature for “the indent-aware writing method log_message()”, and more, better examples
of it — full docs http://www.pythonhosted.org/log_calls#log_message.

• 0.2.2

– “The indent-aware writing method log_message()”, which decorated functions and methods can use
to write extra debugging messages that align nicely with log_calls messages.

– Documentation http://www.pythonhosted.org/log_calls#log_message for log_message().

– Documentation http://www.pythonhosted.org/log_calls#accessing-own-attrs for how functions and meth-
ods can access the attributes that log_calls adds for them, within their own bodies.

• 0.2.1

– The stats.history_as_DataFrame attribute, whose value is the call history of a decorated function as a
Pandas DataFrame (if Pandas is installed; else None).

– An IPython notebook (log_calls/docs/history_to_pandas.ipynb, which compares the per-
formance of using record_history vs a vectorized approach using numpy to amass medium to large datasets,
and which concludes that if you can vectorize, by all means do so.

• 0.2.0

– Initial public release.

• genindex

1.20. Appendix II: What Has Been New 85

http://www.pythonhosted.org/log_calls#log_message
http://www.pythonhosted.org/log_calls#log_message
http://www.pythonhosted.org/log_calls#accessing-own-attrs
http://www.pythonhosted.org/log_calls/record_history.html#stats.history_as_DataFrame
http://pandas.pydata.org
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
http://www.numpy.org/


log_calls Documentation, Release 0.3.2

86 Chapter 1. Table of Contents



INDEX

A
as_dict() (wrapper.log_calls_settings method), 54
as_OD() (wrapper.log_calls_settings method), 54

C
callable, 17
callable designator, 31

D
decorate_class() (log_calls class method), 49
decorate_function() (log_calls class method), 49
decorate_hierarchy() (log_calls class method),

49
decorate_module() (log_calls class method), 50
decorate_module_function() (log_calls class

method), 50
decorate_package_function() (log_calls class

method), 50
display name, 24

F
functional, 16

G
get_defaults_OD() (log_calls class method), 47
get_factory_defaults_OD() (log_calls class

method), 47
get_log_calls_wrapper() (log_calls-decorated

class method), 60
get_own_log_calls_wrapper() (log_calls-

decorated class method), 60
get_own_record_history_wrapper()

(record_history-decorated class method),
76

get_record_history_wrapper()
(record_history-decorated class method),
76

I
indirect value (of a setting parameter), 56

L
log_calls.mute (log_calls class attribute), 26
log_calls.print(), 40
log_calls.print_exprs(), 40
log_calls_settings (data attribute of decorated

callable's wrapper), 53

P
print_methods_raise_if_no_deco (flag), 41
Python Enhancement Proposals

PEP 418, 84

R
record_history_settings (data attribute of dec-

orated callable's wrapper), 75
reset_defaults() (log_calls class method), 46

S
set_defaults() (log_calls class method), 46
setting, 18
settings dict, 27
settings file, 27
stats (data attribute of decorated callable's wrapper),

61
stats (for record_history-decorated callables), 75
stats.clear_history() (method of decorated

callable's wrapper), 65

U
update() (wrapper.log_calls_settings method), 55

87


	Table of Contents
	Index

